퍼지 클러스터링과 결정 트리를 이용한 모델기반 오존 예보 시스템

Model-based Ozone Forecasting System using Fuzzy Clustering and Decision tree

  • 발행 : 2004.04.01

초록

오존 반응 메카니즘은 상당히 복잡하고 비선형적이기 때문에 오존 농도를 예측하는 것은 상당한 어려움을 안고 있다 따라서, 신뢰성 높은 오존 예측값을 구하는데 단일 예측모델만으로는 한계가 있으며, 이를 개선하기 위하여 다중 모델을 제안하였다. 입력데이터에 퍼지 클러스터링을 사용하여 고, 중, 저농도별로 그룹핑한 후, 그룹핑된 오존농도에 대해서 의사결정 트리를 사용하여 그룹핑된 오존데이터가 어느 정도 분류능력을 갖는지 파악하여, 오차가 가장 적은 분류특성을 갖는 그룹을 설정하여, 다중모델의 입력 데이터로 사용하여 모델을 형성하였다. 의사결정 트리를 이용하여 모델의 입력 데이터를 설정하는 것은 어떤 오존농도까지의 범위를 클래스로 설정하느냐에 따라서 모델의 성능과 고, 중, 저농도의 오존을 분류하는 성능이 달라지므로 본 논문에서는 퍼지 클러스터링을 이용하여 의사결정 트리의 클래스의 범위를 설정하여 예측 시스템을 구현하였다.

키워드