Learning by combining Genetic Algorithm and Cellular Automata to plan Master ADU Strategy

Master ADU 전략 수립을 위한 유전자 알고리즘과 셀룰라 오토마타 혼합 학습

  • 윤효근 (공주대학교 컴퓨터공학과) ;
  • 이상용 (공주대학교 정보통신공학부)
  • Published : 2004.04.01

Abstract

컴퓨터 전략 시뮬레이션 게임 설계에서는 Master ADU(Artificial Decision Unit)의 전략 수립을 위한 방법으로 다양한 기법들이 연구되고 있다. 특히 한정된 자원 하에서 게임을 사실적이고 지적인 기능을 구현하기 위해 치팅(Cheating)을 활용하거나 간단한 인공지능 기법이 적용되고 있다. 하지만 이 기법들은 사용자 적응성 및 전략 수립의 단순성을 야기하는 단점을 가지고 있다. 본 연구에서는 전략 시뮬레이션 게임의 전략 수립 에이전트인 Master ADU(Artificial Decision Unit)를 위하여 셀룰라 오토마타의 초기 규칙 생성에 유전자 알고리즘의 교배 및 돌연변이, 적합도 평가를 거친 유전자 형을 적용한 혼합형 전략 수립 기법을 제안한다 이 기법은 ADU가 적합한 유전자 형을 생산 및 선택하여 사용자에 대해 적극적으로 학습할 수 있었다.

Keywords