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ATD Program

* Objective
- Assist developers of high-power Li-lon
batteries to overcome cost, life, abuse
tolerance, and low-temperature
performance barriers

* Multi-laboratory effort

Objectives of the diagnostic studies

» Develop diagnostic tools to study cell degradation
mechanisms

¢ Determine causes that limit the calendar life of
Gen 2 lithium-ion cells

* Suggest and/or implement solutions to improve
life of high-power lithium-ion cells




Cell Chemistry
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Accelerated aging conducted on 1Ah cylindrical cells

Calendar life aging: Cells stored in an elevated temperature oven
Cycle life aging: Cells cycled at elevated temperature

Cells properties (capacity and impedance) measuréd{ periodically
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On aging, cells lose capacity and power
- Data from 1Ah cells
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AC impedance data provides important clues on
cell behavior during aging :

1. Impedance rise in mid-frequency range ".-'"'84 wk
2. Diffusion tail length increases at longer times
» .-
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Very low-frequency portions of 18650-cell EIS data reveal
_significant differences after aging
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Aged cells are disassembled, and cell components
examined to determine sources of impedance rise

Limitation: Cell opening may induce artifacts

@3 Pignzering D&lgu D:v Suience
Science snd S Dapartment
Rechnatagy Courtesy: Dr. Yoo-Eup Hyung S Energy ]




Reference electrode cell measurements
- Quantifies impedance contributions of each electrode

Cathode LiNi; 4Co, 1Al 050,

Li-Sn Reference Reference Electrode Cell
—d‘v
Electrode - 15.5 cm? harvested

Separator > electrodes

- Li-Sn reference wire

I e . - EC:EMC(3:7) +1.2M LiPF,
electrolyte

Measurements in Ar glove box
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Reference electrode cell assembly
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Typical EIS Data on Electrodes Harvested from 1 Ah
Cells after 45°C aging (Reference Electrode Cell)
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Positive electrodes harvested from aged cells show
significant Warburg impedance at v. low frequencies
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Negative electrodes harvested from aged cells show
small differences in impedance at v. low frequencies
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EIS data summary

» Aging of 18650-cells produces

> Relatively large-changes in the very low frequency portion of the
EIS curve, compared to changes in the mid-frequency portion

- Associated with diffusion-related phenomena

+ Reference data with electrodes harvested from 18650-
cells show that
» Impedance increases in the low-frequency portion of the EIS curve
are associated with the positive electrode
» Oxide particles slow down on aging (especially apparent in “region 3)
- The impedance rise, power fade, and also a significant portion
of the capacity fade, results from the inability of the oxide to
deliver lithium at high-rates
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-Cathodes Harvested from 18650 Cells

Capac1ty Data vs. Li — 1.6 sq. cm. coin cells, 0. 064 mA (nominally C/25)
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= Aging produces capacity loss in the positive electrode
= Significant hysteresis observed for higher power fade samples (from ‘region 3)
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Cathodes Harvested from 18650 Cells

Capacity Data vs. Li — 1.6 sq. cm. coin cells
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For Cell 2-026 --

Hysteresis persists even at C/200 rate. But, note ~0.33 mAh

capacity gain from cycling at slower rates! Still, capacity is ~0.4

mAh smaller than that for 2-034.
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Positive Electrode capacity data summary

« Samples from aged cells have lower capacity than
samples from cells that are not aged
» For same rate cycling, this capacity decline increases with cell age
» When cycled at slower rates
- Samples from ‘region 2’ cells show little capacity gain
- Samples from ‘region 3’ show significant capacity gain

* Oxide particles ‘slow down’ with cell age

> A significant portion of 18650-cell capacity loss may be associated
with the inability of oxide particles to deliver or accept Li at the C/1
and C/25 rates. This is especially true for ‘region 3’ cells.

» Some capacity loss is associated with particle isolation, which may
result from (i) electronically insulating oxide surface films, (ii) oxide
particle damage, (iii) secondary particle fragmentation
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Summary for Anodes Harvested from 18650 Cells
Capacity Data vs. Li — 1.6 sq. cm. coin cells, 0.064 mA (nominally C/25)
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+ Negative electrode samples show some capacity loss on aging

« Does not resuit from graphite damage. Most likely results from graphite
particle isolation by electronically-insulating surface films.
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Capacity loss also related to graphite SEI changes
- graphite degradation not evident

SEl thickens on aging

'8 formation consumes Li |

Graphite, 0%PF cell
| SEl thickening consumes
> active Li, which reduces
cell capacity |
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Positive Electrode impedance rise can be correlated
to electrode surface film changes

'SEM imagé
Cell 2014, Calendar life, 24%PF . Al current collector
j YR Not affected by aging
PVdF binder
No obvious degradation
Carbons
Bulk carbon content unaffected
Graphite not damaged during aging
Oxide
Crystal structure changes in oxide
bulk and surface appear minimal
Li,CO, on starting oxide powder - some oxide damage observed in
: N oo high power fade (~50%) samples
Electrode surface films observed
after formation cycling

_ - these films change on aging
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LiNiO, Crystal Structure
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Li atoms enter and exit
through edge planes

Impedance rise will result
from edge plane changes
(a) structural changes

-{b) surface films

Excessive delithlation
can irreversibly damage
the oxide particles
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XRD data show that the oxide bulk is not damaged by any
significant amount — some lattice parameter changes observed

1(003)/1(104) ratio similar for all (003) 34% CF, 51% PF
samples studied, i.e. there is no a= 0.2857 nm
significant disorder in oxide bulk c= 1.4224 nm
0% CF, PF
a= 0.2858 nm (104)
c= 14210 nm (101)
C(002) :
. L ) , A, L , L
10 20 30 40 50 60
J " Two-Theta
' AAJL o, J,l , . A A . .
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l Gen2 Fresh
- i i, A rh »,  a=02862nm
® e s e 70 c=1A41700m

Cells discharged to 3.1V before disassembly
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LiNi, O -type surface layer present on oxide particles

High-resolution Ni-(.)v-Li-O.NEW ‘
Electron Microscopy (ordered rock salt) :

EELS data

O K-edge data

L and bulk are consistent with Ni*? in

' Distinct differences between surface |

(003) reflections absent  : NiFO-Ni-O-Ni: suface layer and NI'8in bulk
in oxide surface (rock salt)
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Electron Microscopy Images Show Films on the
Surface & in Pores between Primary Particles

SEM image showing surféce films

All images from unrinsed samples
Surface films include electrolyte residue

+ Not all oxide particles have direct access to electrolyte
» Oxide surface films could hinder Li-ion motion

Blocking Li-diffusion
pathways of particles
with direct electrolyte
access will also affect
particles that do not
have such access

—— . ¢ -
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C1s and O1s XPS spectra of (+) electrode samples show
clear and reproducible changes on aging et i
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F1s and P2p XPS spectra show abundance of inorganic
products on (+) electrode sample surface Ansiysis aea - 1 mer?

Analysis depth ~ 5 nm
Binder peak intensity lower for
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High-Resolution TOF-SIMS Data Show i dopin = m
Abundance of R-O and P-O Fragments

Oxide analysis data summary

¢ Crystal structure changes in oxide bulk and surface
appear minimal
- But surface films are present on the particles

¢ The positive electrode contains a distribution of
particles, some of which are more likely to
contribute Li-ions, especially at high rates

- More highly delithiated oxide particles are more likely to react
with the electrolyte and form surface films

- Localized surface films can preferentially isolate individual
particles :

- Isolation/damage of the previously high-power oxide particles
results in longer diffusion lengths
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Schematic showing progressive surface film build-up on
oxide particles that can hinder Li-ion diffusion

. ™ ‘ & Qf:r?r:;tion ‘ "%\x’ & (‘(S_tagez Stage 3 5%%\ %rﬁg‘:‘f
s age ~.'3> AN
NS ey Sl
ao R el

Stages 1, 2 and 3 are probably progressive manifestations
- of the same phenomenon
Formation cycling produces charged (ionic) species that are tethered to oxide particles

Stage 1 rise results from increased oxide surface coverage produced by raising the
temperature to 55°C - this stage is absent for cells aged at 25°C

During stage 2, oxide surface coverage gradually increases, increasing impedance

The transition from stage 2 to stage 3 results from increasing interaction (cross linking)
between the charged species from various particles, increasing electrolyte viscosity in
electrode pores and therefore the impedance
Office of Scienne
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Conclusions and Future Work

» Cell capacity fade results from
- Increasing thickness of negative electrode SEI layer
- Isolation of oxide particles in the positive electrode

* Cell power fade is dominated by impedance
increase at the positive electrode
- Localized isolation of oxide particles by surface films
- Structural changes in certain oxide particles

* |dentify reaction mechanisms that control
capacity and power loss
- TOF-SIMS experiments are in progress -
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