BTO2

Effect of Annealing Temperature on Stresses Generated during
Lithium Transport through LiMn₂O₄ Film Electrode
열처리 온도가 리튬 망간 산화물 박막 전극내
리튬 이동시 발생하는 응력에 미치는 영향에 대한 연구

<u>김영후</u>·변수일·고주영 한국과학기술원 신소재공학과

Effect of annealing temperature on stresses generated during lithium transport through LiMn₂O₄ film electrode was investigated in a 1 M LiClO₄-PC solution using a laser beam deflection method combined with cyclic voltammetry and galvanostatic charge/discharge experiments. For this purpose, LiMn₂O₄ film electrodes were prepared by spin-coating a viscous gel on the Pt/Ti/thin glass substrate, and then annealed at 550 °C and 650 °C in air. From the X-ray diffraction patterns and the scanning electron microscopy images, it was found that LiMn₂O₄ film electrode annealed at 550 °C (LT-LiMn₂O₄) showed less crystallinity and smaller grain size than those of $LiMn_2O_4$ film electrode annealed at 650 °C (HT-LiMn_2O_4). From the cyclic voltammograms (CVs) and the galvanostatic charge/discharge curves, it was noted that LT-LiMn₂O₄ showed better cyclability and larger capacity than HT-LiMn₂O₄. From the analysis of the stress transients measured along with the CVs and the galvanostatic charge/discharge curves, it was shown that the stress change developed in LT-LiMn₂O₄ during lithium transport in the two-phase region around 3 $V_{\text{Li/Li}}$ was less than that developed in HT-LiMn₂O₄. The effects of annealing temperature on the cyclability and the stress generation were discussed in terms of a Jahn-Teller distortion in detail. Furthermore, the effect of annealing temperature on the capacity was also discussed in terms of the crystallinity of the LiMn₂O₄ film electrode.

References

- 1. N. Treuil, C. Labrugere and M. Menetrier, J. Phys. Chem. B, 103 (1999) 2100.
- 2. C. Liquan and J. Schoonman, Solid State Ionics, 67 (1994) 17.