Structural Stability of Mn Based Oxide for Lithium Secondary Battery 리튬 2차전지용 망간계 산화물의 구조 안정성 Yong Joon Park, Young-Sik Hong, Xianglan Wu, Kwang Man Kim Young-Gi Lee, Kwang Sun Ryu, and Soon Ho Chang Ionics Device Team, Electronics and Telecommunications Research Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, KOREA Recently, solid solution series between Li_2MnO_3 ($\text{Li}[\text{Li}_{1/3}\text{Mn}_{2/3}]O_2$) and LiMO_2 (M=Cr, Ni, Co...) have received significant attention as an alternative cathode material for LiCoO_2 due to their high discharge capacity. Li_2MnO_3 was considered electrochemically inactive for Mn^{4^+} in Li_2MnO_3 normally could not be oxidized beyond 4+ oxidation state in order to extract Li from its lattice. However, it is interesting that substantial charge can be removed from, and, to some extent, reinserted into the Li_2MnO_3 structure. Moreover, the solid solution series between Li_2MnO_3 and LiMO_2 (M=Cr, Ni, Co..) showed very high discharge capacity over 200mAh/g when they cycled with an upper cut-off voltage of about 4.6 $^{\sim}$ 4.8 V. We investigated the electrochemical properties have Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O₂ and Li[Co_x Li_(1/3-x/3)Mn_(2/3-2x/3)]O₂ compound prepared by a simple combustion method. The $Li[Ni_xLi_{(1/3-2x/3)}Mn_{(2/3-x/3)}]O_2$ compound with low Ni content (X<0.25) showed stable cycle performance and sustained high discharge capacity of about 200 mAh/g after several cycles. On the contrary, the Li[Co_xLi_(1/3-x/3)Mn_(2/3-2x/3)]O₂ compound displayed phase conversion to spinel-like phase during cycling. In this study, we characterized the electrochemical properties of Li[Ni_x Li_(1/3-2x/3)Mn_(2/3-x/3)]O₂ and Li[Co_xLi_(1/3-x/3) Mn(2/3-2x/3)]O₂ compound. And, the cycling performance is compared by XRD and XANES. Specially, we tried to understand the origin of the difference of phase stability for two kinds of compound during cycling.