Development of Precision Attitude Determination System for KOMPSAT-2 Jae-Cheol Yoon¹, Dongseok Shin², Hungu Lee², Young-Ran Lee², Hyunjae Lee³, Hyo-Choong Bang³, Yee-Jin Cheon¹, Jae-Min Shin¹, Hong-Youl Moon¹, Sang-Ryool Lee¹, Gab-Ho Jeun¹ ¹KOMPSAT Systems Engineering and Integration Department, Korea Aerospace Research Institute, Daejeon 305-333, Korea E-mail: yjch@kari.re.kr ²Satrec Initiative Co. Ltd., Daejeon 305-811, Korea ³Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea KARI precision attitude determination system has been developed for high accurate geo-coding of KOMPSAT-2 image. Sensor data from two star trackers and a IRU are used as measurement and dynamic data. Sensor data from star tracker are composed of QUEST and unit vector filter. Filter algorithms consists of extended Kalman filter, unscented Kalman filter, and least square batch filter. The type of sensor data and filter algorithm can be chosen by user options. Estimated parameters are Euler angle from J2000 frame to optical bench frame, gyro drift rate bias, gyro scale factor, misalignment angle of star tracker coordinate frame with respect to optical bench frame, and misalignment angle of gyro coordinate frame with respect to optical bench frame. In particular, ground control point data can be applied for estimating misalignment angle of star tracker coordinate frame. Through the simulation, KPADS is able to satisfy the KOMPSAT-2 mission requirement in which geo-location accuracy of image is 80 m (CE90) without ground control point.