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Simulation of Low-Density Gas Flows
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Numerical Simulation of Low-Density Gas Flows
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Flow Regimes of Gas Dynamics
Boltzmann Equation
= F D A (Direct Simulation Monte-Carlo Method)
Low Thrust Nozzle, Hypersonic Scramijet Inlet
o Finite-Difference Method Coupled with Discrete
Ordinate Method
Microchannel flow. Micro Plate, NACA 0012 airfoil
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Flow Regimes of Gas Dynamics
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Fields of Application

spacecraft, satellite,

High Altitude plumellow-thrust A\
Flow ging
Rarefied vacuum pump, etching, coating
Gas Dynamics Vacuum chemical vapor deposition
Others o

pas bearing, computer flying head
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Flow Regimes in High Altitude Flows
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Flow Regimes in Microsystems
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Boltzmann's Integro-Differential Equation
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Oth order: Euler equation
Ist order: Navier-Stokes equations
2nd order: Bumett equations

Direct Simulation Monte Carlo Method
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Direct Simulation Monte-Carlo(DSMC) Method

A computer technique to solve the Boltzmann equation by
concurrently following the motion and intermolecular collisions
of representative molecules
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EXAMPLE FLOW PROBLEMS

- Low Thrust Nozzle
- Hypersonic Scramjet Inlet
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LOW THRUST NOZZLE FLOW

Table 1 Flow conditions

Fig. | Geometry of low-thrust graphite nozeie
(Expt. by Rothe, Corneil Lab., 1971)

Cage | Case Il
Test gas N2 N2
Stagnation temperature, To 300 K 300K
Stagnation pressure, P, 474 Pa 1245 Pa
Ambient pressure, Py, 1.5Pa. 3.8Pa
Wall temperature, Tw 00K 00K
Reynolds numbar, R 270 709
Knudsen number, Kn 2.3x107 8.8x104
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Monte-Carlo

Computational
domain”

Navier-Stokes

N 3oie-Carlo

Computainal domain and geome of Inw~\lhru.~‘t no

npairison, of Mach nunber contour?}
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To = 300 K
Pa = 474 Po
gﬂc/ﬂl 66

Fig. 1 Density protile along centerline of a small conical nozzle
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Po = 1245 P

Normalized temperature

Fig. IV Temperature profile at axit plane of a small conical nozzle
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HYPERSONIC LOW-DENSITY
SCRAMJET INLET FLOW
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r=1526 x=171 £ =258 )

Fig. 6 Comparison of denwity variation along the A ¥
axis for the case of P, = 1245 Pa

Geometry of scramjet inlet model.
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FREE STREAM FLOW CONDITIONS
' CHARACTERISTICS OF THE FLOW

® Dryair
® To=4100K {3 shock/boundary tayer interaction
{3 Shock impingement and shock induced separation
Mo Ta()  Pe(Pa) Kn(rid) Rew(m) o ,
Casel 120  208.0 10 0.02 26,000 Q Thick viscous layer due to low-density fluid
Casell 150 1350 24 006 23,000 {3 Thermal noneauilibrium and velocity slip
Case lll 18.0 94.3 0.68 0.12 14,000
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Po = §5.S5MPa
Ta = 4100k

O e N

Pressure contours (P/Pfs), To = 4,100 ¥
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Fig, 17 Comparison of pitet pressure across the ducl passage
near the resr end (x = 274 mm)
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Finite—Difference Method Coupled
with Discrete Ordinate Method
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Finite-Difference Method
Coupled with Discrete Ordinate Method

Boltzmann Equation with BGK model

af ., af

eV, =4 (F- 1
Vige Vs 2y (F-f) ()}
A, : collision frequency
F=n(27RT ) expf(V =U )* / 2RT} @)
n={fdv
aU=(V fdv T ®

3nRT = [(V -U > f dV

Discrete Ordinate Method

n= .[f‘”’ A= LEPhubs (10-a3)
nU [V £dv Al =ZIB LY sindys (10-b)
iy = ZER P Vs c03b0ss (10-c)

3nRT = [(V -U [ dV 33T /2= SEAP (s, VR )- MU +0}) (10-d)
Vs discrete speed

[ discrete velocity angle
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discrete distribution functions
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Micro channel flow with small L/h ratio

Gas N,
Channel Length 15 pm
Channel Height 0.50 pm
L/h ratio 30
Upstream Chamber Pressure 2.5bar
Downstream Chamber Pressure 1.0 bar
Tivs Tour Tware 300K
Mean Knudsen Number 0.06
Computational Grid (Cell) 80x50
(81x81)

Kn =0.06
h=0.50 pm,L=15 um
L/h =30

exit

Density contours
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Kn =0.06
h=0.53 um, L =15 pm
L/h=30
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X-veloclty contours
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05 L B Kn=0.06
0 x/L 1

Comparison of x-velocity contours(nvs): color contours, present method,
dot-dashed lines, DSMC method, dashed lines, Navier-Stokes with slip.
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Microchannel with a Large L/H Ratio
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Microchannels in Series
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Comparison of velocity {m/s} contours.
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Comparison of pressure distributions.
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Gas alr
Plate Length 20 pm
Plate thikness Opm
Free stream velocity 69 nv's
Free stream Mach number 0.2
Free stream temperature 295K
Knudsen Number 0.03
Computational Grid 241x161

rh

LA AR STOH YUY
AR IS AP,

_26_




@ TAEGU UNIVERSITY

Department of Chemical Engineering

r TAEGU UNIVERSITY

Department of Chemical Engineering

Drag coefficient. C
-

n

o

conp. expe.
incump. expt.

5% HE =912 N% S|9R

F ——Ns
~ — Blantus

. i
.00 om 0l t 0 100

Reynoids number, Re

Drag coefficient of & finite plate at low Reynolds numbers.

Gas air
Plate Length 20 pm
Plate thikness 1 pm
Free stream velocity 30nvs
Free stream Mach number 0.087
Free stream temperature 295K
Knudsen Number 0.03
Computational Grid 231x169
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(a) Present method (b) IP method {¢) NS with slip

Comparison of pressure contours at Re = 4.

NACA 0012 28 =912 X 3R

Case | Ma | Re a P, T, U
(deg) | (x 10%atm) | (K) (m/s)
2.759 161 509
2.759 161 509

Le = 0.04m
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(a) Present method (b) Experiment

Density contours around a NACA airfoil at Ma = 2.0, Re = 106, and o = 10 deg.
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Velocity and pressure contours around a NACA airfoll at Ma = 2.0, Re = 106, and a. = 10 deg.
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T CONCLUSIONS

1. Two different methods to analyze rarefied gas flows, the DSMC

o s ] and the FDDO methods, have been introduced.

é— 2. The validity of the methods is demonstrated by comparing the
é tr —— penent 3 results with those from experiment and other methods.

5 oW 1 3. ltis shown that the DSMC method is an accurate tool for high

4. For low speed rarefied flows, the DSMC method suffers from
P o; " " statistical scattering. New tools such as the FDDO method are
o °; m:’ ’ required for low speed rarefied flows

-2
0.2

ask I een NSalip b speed rarefied flows.
H
4

Comparison of pressure coefficients at Ma = 2.0 and Re = 106, and @ = 0 deg.
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