[P-18]

Activation of the ras oncogene and its relationship to aflatoxins-DNA adduct formation in the rat liver treated with aflatoxins

Sook Jin Lee¹, Tae Myoung Kim¹, Jae Hyun Kim¹, Cheol Beom Park³, Jin Tae Hong², Hwan Soo Yoo², Beom Jun Lee¹, Dae Joong Kim¹, Young Won Yun¹

College of Veterinary Medicine and ²College of Pharmacy, Chungbuk National University, Cheongju 361-763, ³Biotoxtech, Cheongwon-gun 363-883, Korea

Aflatoxins are produced by Aspergillus flavus, parasiticus and their related fungi that grow in improperly stored foods such as corn, rice, peanuts and other cereals. In addition to its high mutagenicity and cytotoxicity, aflatoxin B₁ (AFB₁) is a potent hepatocarcinogen in experimental animals and an important factor for the human liver cancer. In spite of a high attention to the hepatocarcinogenicity of aflatoxins, the relative toxicity, for the risk assessment, of other types (AFB₂, AFG₁ and AFG₂) of the toxin was not fully studied. In the present study, the relative potency for the hepatotoxicity, mutagenicity, and DNA-adduct formation by aflatoxins B₁, B₂, G₁ and G₂ were investigated. Sprague-Dawley male rats were orally administered AFB₁, AFB₂, AFG₁ and AFG₂ at doses of 0.25, 1.25 or 2.5 mg/kg. Animals are killed at 12, 24 or 48 hrs following alflatoxin exposure, the histopathological examination, expression of ras oncogene and 8-OxodG formation as the biomarkers of hepatotoxicity, mutagenicity and DNA-adduct formation, respectively, were examined and analyzed for the relative toxicity of aflatoxins.