P71

Enzymatic and Energetic Properties of NADH: Ubiqinone Oxidoreductase in the Marine Bacterium Pseudomonas nautica

Young Jae Kim

Department of Microbiology, College of Natural Sciences, Changwon National University, Sarim-dong, Changwon, Kyungnam 641-773

Abstract Each oxidoreductase activity of the aerobic respiratory chain-linked NADH oxidase system in the marine bacterium Pseudomonas nautica was stimulated by monovalent cations including Na⁺, Li⁺, and K⁺. In the presence of NADH or deamino-NADH as electron donors, QH₂ formation was approximately 1.3 fold higher in Na⁺ than K⁺ at a concentration of 0.08 M, whereas the other reductase activities were not significantly higher in Na⁺ than K⁺. The optimal pH of NADH (or deamino-NADH):ubiquinone-1 oxidoreductase was 9.0 in the presence of 0.08 M NaCl. The activity of NADH (or deamino-NADH): ubiquinone-1 oxidoreductase was about 33% inhibited by 60 μM 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). The activity of NADH (deamino-NADH): ubiquinone-1 oxidoreductase was about 32 to 38% inhibited by 80 μ M rotenone, whereas the activity was highly resistant to capsaicin. On the other hand, electron transfer from NADH or deamino-NADH to ubiquinone-1 generated a membrane potential ($\Delta \Psi$) which was larger in the presence of Na⁺ than that observed in the absence of Na⁺. The $\Delta \Psi$ was almost completely collapsed by 5 μ M carbonyleyanide mchlorophenylhydrazone (CCCP), and approximately 50% inhibited by 100 μ M rotenone, or 60 μ M 2-heptyl-4-hydroxyquinoline (HQNO). HQNO, also, made the $\Delta \Psi$ very unstable. On the basis of the results, we suggest that the NADH: ubiquinone oxidoreductase of *P. nautica* is quite different in enzymatic and energetic properties compared to that of other marine halophilic bacteria.