P35 ## An aqueous extract of *Platycodi radix* inhibits LPS-induced NF-K B nuclear translocation in A549 cells Byung-Tae Choi, Jun-Hyuk Lee, Young-Hyun Choi¹, Ho-Sung Kang² and Un Bock Jo³ Dept. of Anatomy and ¹Biochemistry, College of Oriental Medicine, Research Institute of Oriental Medicine, Dong-Eui University, Busan 614-052 ²Dept. of Molecular Biology, College of Natural Sciences, ³Dept. of Biology Education, College of Education, Pusan National University, Busan 609-735 We investigated the effects of aqueous extract from *Platycodi radix* (AEPR), a traditional drug used to treat acute lung inflammatory disease. lipopolysaccharide (LPS)-induced inflammation in A549 human cultured airway epithelial cells. Nuclear factor- κ B (NF- κ B) and its inhibitory regulator, inhibitory- κ B (I- κ B), play crucial roles in LPS-induced inflammatory response. We show that LPS-induced nuclear translocation of NF- κ Bp65 is inhibited by AEPR. LPS-induced expression of $I-\kappa B\alpha$, which is expressed by LPS-induced activation of NF- κ B, is inhibited by AEPR as well. Beside LPS-induced expression of a group of genes, such as tumor necrosis factor- α (TNF- α), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), are repressed by AEPR. We also found that expression of heat shock protein 70 (Hsp70), which has an anti-inflammatory activity, is increased by AEPR plus LPS. These results suggest that AEPR may act as a therapeutic agent for inflammatory disease through regulating the activity of NF- κ B and expression of inflammatory genes.