Fabrication and Characterization of YBCO Thin Films Prepared by the MOD-TFA Process Sung-Hun Wee^a, Woo-Jin Jung^b, Hee-Gyoun Lee^b, Gye-Won Hong^b, Seung-Hyun Moon^a, Chan Park^c, Sang-Im Yoo^a ^a School of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea YBCO thin films were prepared on LaAlO₃(100) single-crystal substrates using the metalorganic deposition of trifluoroacetate precursors (MOD-TFA). TFA-based precursor solutions of YBCO were coated on the substrates by the spin coating method. As-coated films were dried in an oven, fired first at relatively low temperatures up to 400°C for 24 h in a humid O₂, fired again at the temperature region of 700~825°C for 2 h in a low partial pressure of H₂O and O₂, and finally oxygenated at 400°C for 1 h. Unlike previous report [1], it was confirmed that the films were consisted of Y₂O₃, BaF₂, and CuO after the first heat treatment. DTA-TG analyses for precursor films exhibited a large weight loss, related to several exothermic reactions, at the temperature region of 240~300°C. The maximum Tc value of 91K was obtained at annealing temperatures of 750~800°C. The largest J_C of 0.94 MA/cm² was obtained from a single-coated YBCO film on LaAlO₃(100) annealed at 775°C for 2h. [1] J. A. Smith, M. J. Cima and N. Sonnenberg. "High Critical Current Density Thick MOD-Derived YBCO Films", IEEE Trans. Appl. Supercond., vol 9, p. 1531 (1999) keywords: YBCO thin films, MOD-TFA, critical current density ## Acknowledgement This work was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea. ^b Graduate School of Energy, Korea Polytechnic University, ShiHung City, Kyonggi-Do 429-793, Korea ^c Applied Superconductivity Research Group, Korea Electrotechnology Research Institute, Changwon City, Kyungsangnam-Do 641-120, Korea