Effect of Nb-doping on Superconductivity and Magnetic Properties of RuSr₂Gd_{1.5}Ce_{0.5}Cu₂O_z

H.K.Lee*, a, K.D.Kima, Y.C.Kimb

^a Kangwon National University, Chunchon, Korea ^b Pusan National University, Pusan, Korea

The ruthenocuprates RuSr₂Rcu₂O_z and RuSr₂R_{2-x} Ce_xCu₂O_z(R=Eu, Gd) have recently found to display the coexistence of superconductivity and ferromagnetism. In the ruthenocuprates, superconductivity is considerded to be confined to the CuO₂ planes, and the magnetic ordering is due to the Ru sublattice. In order to get further insight on the role of RuO₂ layer, we have investigated the influence of the substitution of Nb for Ru on properties of Ru_xNb_xSr₂ Gd_{1.5}Ce_{0.5}Cu₂O_z. We find that the Nb substitution depresses superconductivity only slightly from 27 K for x=0 to 24 K for x=0.5 in the resistivity measurement, but reduces significantly the ferromagnetic component of the samples. This behavior is discussed in connection with the reduction of the volume fraction of the magnetic phase.

keywords: ruthenocuprates, Nb substitution, superconductivity, magnetization