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1. INTRODUCTION 

 

Axially moving continua (continuous materials) can be 
found in various engineering areas: high speed magnetic tapes, 
band saws, power transmission chains and belts, steel strips in 
the galvanizing line, paper sheets under processing, etc. 
Especially, the dynamics analysis and control of axially 
moving continua have received a growing attention due to the 
entrance of a new era of flexible robotic manipulators and 
flexible space structures. However, the utilization of axially 
moving continua is limited because of the unwanted vibrations 
of the system in many applications, and in particular in 
high-speed precision systems. 

Active vibration control is then an important solution to 
reduce vibration and improve performance in many of the 
axial transport systems. Vibration control schemes on axially 
moving strings include references [3, 6, 7, 8, 10, 13, 16, 17, 
etc.], and those on axially moving beams include references [2, 
5, 9, 11, etc.]. Most of the control laws in above references 
have been derived by using the Lyapunov method. 

As well known, the most important issue in the Lyapunov 
method is the selection of a suitable energy functional and 
then the construction of an effective control law through the 
time derivative of the energy functional. Thus, it is essential 
that the time derivative of the energy functional considered 
should be exactly performed with a proper mathematical 
manner. 

Renshaw et al. [14] have suggested a differentiation method 
in Eulerian description for the energy functionals of 
prototypical axially moving string and beam models, and have 
concluded that a conserved Eulerian functional is the Jacobi 
integral of the system and qualifies as a Lyapunov functional 
when it is positive definite. In the literature, their conclusions 
have been accepted as an established theory for calculating the 
time derivative of energy functionals of the axially moving 
systems (see, [10, 11]).  

But, unfortunately, the method presented in [14] and 
subsequent results in [10, 11] are not complete because the 
time derivative of the energy functional in Eulerian description 

 
should have taken into account the velocity of the moving 
material. 

In this paper, the reason why the result in [14] is not 
complete is explained in detail in Section 2. In Section 3, a 
three-dimensional version of the Leibniz’s rule is employed as 
a novel method to calculate the time derivative of an energy 
functional for axially moving continua. From the Leibniz’s 
rule, it is seen that the time derivative of the energy functional 
in Eulerian description should involve the velocity of the 
moving material. Also, two energy functionals for 
one-dimensional axially moving string and beam models and 
their time derivatives are derived and then compared with 
those obtained with the method in [14]. 

 
2. PROBLEM FORMULATION  

 

Fig. 1 shows the schematic of an axially moving string, 
which will be used as a representative example for developing 
a theory and comparison. The two support rolls at both 
boundaries are assumed fixed, i.e., fixed in the sense that there 
is no vertical movement but it allows the string to move in the 
horizontal direction. 

 

 
Fig 1. Schematic of an axially moving string with fixed 

boundaries. 
 
Let t  be the time, x  be the spatial coordinate along the 

longitude of motion, sv  be the axial speed of the string, 

),( txw  be the transversal displacement of the string at spatial 
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coordinate x  and time t , and l  be the length of the string 
from the left to the right supports. Also, let ρ  be the mass 
per unit length and sT  be the tension applied to the string. 

Because the string travels with a constant speed, sv , the 
total derivative operator (material derivative) with respect to 
time should be defined as  

dt
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xdt
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∂
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where tt ∂⋅∂=⋅ )  ()  (  and =⋅ x)  ( x∂⋅∂ )  (  denote the 

partial derivatives: t)  ( ⋅  defines the rate of change at a fixed 

place, i.e., the local change, and x)  ( ⋅  gives the change due 

to the advancement from x  to dxx + , i.e., the convective 
change. 

The mechanical energy of the string between 0=x  and 
lx =  is given by  

dxwwvV
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where ),( txww xx
∆
=  and ),( txww tt

∆
=  have been 

abbreviated. It is noted that (2) comprises the kinetic energy in 
the transverse direction plus the potential energy due to 
tension. The kinetic energy due to the longitudinal movement 

sv  has been excluded because it does not affect the final form 
of the control law that will be derived. By using the 
Hamilton’s principle, the governing equation and boundary 
conditions of the axially moving string are derived as follows: 

02 2 =−++ xxsxxsxtstt wTwvwvw ρρρ , lx <<0 , 

0),(),0( == tlwtw . (3) 
In the process of designing a controller using the Lyapunov 

method, it is essential to analyze and handle the time 
derivative of a Lyapunov function candidate of the system 
considered, i.e., the mechanical energy. Renshaw et al. [14] 
have presented that to get the time derivative of an energy 
functional for axially moving continua, only an Eulerian 
functional is qualified as a Lyapunov functional candidate 
under the assumption that it is positive definite, but not a 
Lagrangian functional. 

The Eulerian description of the mechanical energy of the 
span [0, l ] in Fig. 1 is  
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Alternatively, the Lagrangian description of the mechanical 
energy of the set of particles between =x tvs  and ltvs +  is 
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where EulLag VV =  at 0=t .But, note that dtdVEul  

and dtdVLag  are distinct. The main assertions in [14] are 

summarized as follows: 
For dtdVEul , the following result was claimed. 
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where the first equality has been derived using 

one-dimensional Leibniz rule of the following form 
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and (3) has been used in deriving the second equality. The first 
equality in (6) can be also derived from the following equation 
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if 0=dtdx  is treated zero at lx ,0= . 

For dtdVLag , on the other hand, the limits of integration 

are time dependent. The result given in Renshow et al. (1988) 
is 
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where 0=tw  at both boundaries due to the fixed boundary 
conditions. 

Renshow et al. [14] have observed that (9) is valid only at 
0=t  because (3) applies only when the material particles 

associated with LagV  comprise the string span [0, l ], and 

hence (9) is a valid energy functional only at t = 0. 
Consequently, their conclusions were: A positive definite 
Lagrangian functional, even though it is a material derivative, 
can not be used as a Lyapunov functional, because its time 
derivative is not valid for more than an instant. Instead, the 
Eulerian functional of (6) should be used as a Lyapunov 
functional even though it is not a material derivative. 

 
Remark 1: The observation in [14] that the Lagrangian 

functional can not be a Lyapunov function is correct. But, the 
way of evaluating the Eulerian functional (6) is not correct. In 
the literature a numerous results [6, 7, 8, 9, 17, etc] have relied 
on the material derivatives, which are all believed correct. 

 
Remark 2: The assertion in [14] misses a critical fact in 

evaluating (6), i.e., dtdx /  must not be considered zero at 
lx  ,0=  even though 0 and l  are constants. It is believed 

that such a conclusion was due to the misunderstanding that 
dtdx  denotes the velocity of the surface of the span part 

[0, l ] in the Eulerian description. However, in fact dtdx  in 
(8) denotes the velocity of the material being transmitted, not 
the velocity of the support point. Therefore, the correct 
evaluation of (6) should be given in the following form: 
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which will be explained in detail in the next section. 
 

3. RATE OF CHANGE: THE CORRECT 
METHOD 

 

For the time derivative of an energy functional of axially 
moving continua, a three-dimensional version of Leibniz’s 
rule is first derived. For this, we introduce a time-varying 
volume )(tU  of finite magnitude with a time-varying surface 

)(tS  that encloses )(tU . Note that “time-varying” means 
“moving and/or deforming” while “time-invariant” means 
“fixed,” i.e., “neither moving nor deforming.” 

The axially moving continua have to be analyzed in view of 
Eulerian description since our attention is focused on what 
happens on a specific region of space as time passes. Further, 
the volume and the surface that are occupied by a specific 
region of the axially moving span should be considered as 
time-varying since the axially moving continua vibrate even in 
the case that the both boundaries are fixed. 

At first, it is necessary to deal with a function )(tϕ  defined 
by an integral of the form  

∫= )(
 ),()(

tU
dUtxt

r
ψϕ , (11) 

where x
r

 is the position vector relative to a chosen origin and 
the quantity ψ  represents the fluxes of mass, linear 
momentum, angular momentum, internal energy, and kinetic 
energy, etc. In (11), the volume integral is a triple integral. 
Note that the position vector x

r
 is a time independent 

variable in Eulerian description while the vector x
r

 is a time 
dependent variable in Lagrangian description (see [15, pp. 
8-11; 4, pp. 5-8]). 

Since a material point in Eulerian description is described at 
place x

r
 and time t , x

r
 is called the field coordinate and 

udtxd
rr

=  is called the material velocity given in field 
coordinates (see [15, pp. 8-11; 4, pp. 5-8]). Note that using the 
material derivative as defined in (1) the velocity u

r
 can be 

also obtained as follows: 
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where 0=∂∂ tx
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 since x
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 and t  are independent variables, 

and uxu
rrr

=∇⋅  since the gradient of x
r

, or x
r

∇ , is the unit 
dyadic (see [4, pp. 6; 12]). On the other hand, the material 
velocity in Lagrangian description is given as utx

rr
=∂∂ , 

where x
r

 is a time dependent variable which is attached to 
the material point that moves (see [15, pp. 9; 4, pp. 8]).  

Now, an expression for the time derivative dtdϕ , i.e., a 
three-dimensional version of Leibniz rule is derived yielding a 
more direct interpretation than that of [4] for our need.  

If U  in (11) is time-invariant, then the differentiation 
with respect to t  under the integral sign, dtdψ , can be 

justified for all t  on a time interval when ψ  and the 
resultant integrand t∂∂ψ  are continuous for bta ≤≤  and 
the domain of integration. 

More generally, when )(tU  is time-varying, )(tϕ  can be 
considered as a function of t  directly and also indirectly, 
through the intermediate variable )(tS  which denotes the 
limits of )(tU  in the volume integral. Note that the region of 

)(tS  is occupied by material points at time t  and each 
material point on the surface is also described as the field 
coordinate x

r
 at time t  in the Eulerian description. Hence 

ϕ  can be written as ),( tx
r

ϕϕ = . It then follows by 
employing the total differential that  

u
tdt
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= ϕ
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where ∇ -operator provides the gradient of ϕ . If the 
derivatives on the right side in (13) are continuous, then 

t∂∂ϕ  is to be calculated by treating U  as a time-invariant 
or fixed region, and hence by merely differentiating with 
respect to t  under the integral sign when ψ  and t∂∂ψ  
are continuous. To evaluate the other partial derivative of ϕ  
in (13), i.e., u

r
⋅∇ϕ , Gauss’ theorem holds:  

∫∫ =∇=∇
SU
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where n̂  is the outwardly positive unit normal vector to 
)(tS , and the surface integral is a double integral while the 

volume integral is a triple integral. Note that the time-varying 
surface region, )(tS , is occupied by the material with the 
velocity u

r
 on the surface during the motion. 

Consequently, the Leibniz’s rule in three dimensions is 
given by 

∫ )(
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where the volume integral on the right side in (15) 
represents the change in ψ  that occurs within )(tU , while 
the surface integral accounts for the transport of ψ  across 
the time-varying surface )(tS .   

Note that the surface integral in (15), ∫ ⋅
)(

 ˆ
tS

dSnu
r

ψ , 

denotes the net flux of ψ  that crosses )(tS  since the 
amount of ψ  that crosses a differential area dS  of )(tS  

per unit time is dSnu  ˆ⋅
r

ψ .  
The most important point in the application of (15) is: In 

the Leibniz’s rule of (15), u
r

 denotes the material velocity 
given in field coordinates, not the velocity of time-varying 
surface )(tS  bounding the time-varying volume )(tU . 
From this reason, even though the boundary conditions 
(supports) in Fig. 1 are fixed, dtdx /  in (8) should not be 
treated as zero. 

The same conclusion can be drawn from other view as 
follows: Suppose that u

r
 in (15) denote only the velocity of 

)(tS , then it means that the following equation, known as 
Reynold’s transport theorem, is no longer valid:  
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where the terms on the right side in (16) have the same 
physical interpretation as those on the right side of (15). From 
(16), it is seen that the time-varying region )(tU  on the right 
side is replaced with a fixed region U  (and a fixed surface 
S ) which coincide with it at time t . Note that the system 
with U  and S  on the right side in (16) seems like an open 
system since mass may cross the fixed surface S  with the 
material velocity u

r
. Otherwise, i.e., if u

r
 in (16) denotes the 

velocity of S , then (16) should be given as 

∫ )(
 

tU
dU

dt
d

ψ dU
tU

 ∫ ∂
∂

= ψ , (17) 

due to 0=u
r

 under the condition of a fixed surface.  
Actually, (16) has been derived from the following 

equations by using the Leibniz’s rule given by (15) 
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where m  denotes the mass of the bounded piece of material 
and is the sum of the mass elements dm  over the set M  of 
the material point of the closed material volume )(tU , i.e., 

∫= M
dmm    (see [15, pp. 30-35]). Note that the integral in 

(18) is a single integral and that M  in (18) is constant since 
the same piece of material is always considered by the closed 
surface )(tS . Thus, if following the theory presented in [14], 
then (18) should be given as 
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= ψ , (19) 

because the domain of integration M  is constant, i.e., the 
limits of integration are time independent. From (19), it is 
impossible to derive the result in (16). It just means that the 
Reynold’s transport theorem given by (16) cannot be applied 
any more.   

As investigated above, it is evident that u
r

 in (15) should 
not be considered as the velocity of the surface )(tS  and also 
this consideration is unsuitable even in view of the physical 
concept. That is, u

r
 in (15) should denote the material 

velocity. 
Finally, the time derivative of one-dimensional axially 

moving continua can be obtained through the 
three-dimensional version of Leibniz’s rule given by (15) as 
follows: During the vibrations, the shape of the volume 
changes due to the moving and deforming and successively 
takes up new regions in space. Hence, )(tU  denote the 
region which is occupied by the axially moving span part at 
time t . However, the surface )(tS  is given as two points in 
the one-dimensional case, i.e., limits of the integration. 

 
Example 1: For the one-dimensional axially moving string 

introduced in (3), the material velocity u
r

 is sv
r

. Note that in 

this system the material points at lx  ,0=  still have the 
material velocity svv  despite of fixed boundary conditions, 

and nvs ˆ⋅v  at the boundaries are given as sv−  at 0=x  and 

sv+  at lx =  because n̂  is the outwardly positive unit 

normal vector to )(tS .  
 Thus, the time derivative of (2) by using (15) is given as 
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Note that (20) is the same as (10) and entirely different 
from the results in (6) and (9), which were presented in [14].  

 
Example 2: (15) is now applied to the time derivative of an 

energy functional of one-dimensional axially moving beam 
with axial tension sT , flexural rigidity EI , and traveling 

speed sv . The governing equation of the beam is 
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The mechanical energy is defined by 

dxwwvV
l

txsbeam  )(
2
1  

0 
2∫ += ρ dxwT

l
xs  

2
1  

0 
2∫+  

dxEIw
l

xx 
2
1  

0 
2∫+ .(22) 

The time derivative using (15) is given as 
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More specific forms of beamV&  with various boundary 
conditions are derived as follows:  

Case 1: Fixed boundary conditions, i.e., 
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Case 2: Simply supported conditions, i.e., 
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Remark 3: From (20) and (23), the material derivative 

defined in (1) can be directly utilized in the derivation of (20) 
and (23) as follows: 
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where [ ]  2)(~ 22
xstxs wTwwvV ++= ρ  and 

[ ]  2)(~ 222
xxxstxs EIwwTwwvV +++= ρ in the case of string 

system (3) and beam system (21), respectively. However, the 
result in (26) should be understood from the viewpoint that it 



  
 

is really obtained through (15) because of the vibrations of the 
continua. It is also noted that the result in (26) is entirely 
different from that of the Lagrangian description with the 
material derivative in (9).  
 

Remark 4: The result in (20) also coincides with the result 
derived by using the Lyapunov stability theorem [1, pp. 46-47] 
as follows: 

Let ),,( twwV tx  a Lyapunov function candidate of the 
axially moving string in (3) such that 
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Lyapunov stability theorem the time derivative of 
),,( twwV tx  is obtained as  
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The result in (30) obtained by the Lyapunov stability 
theorem is the same as that in (20) not that in (6). Note that the 
derivation method employed in (28)-(29) is being accepted in 
general in the literature for distributed parameter systems (see 
[1, pp. 45-63]). 

 
Remark 5: Further, note that (29) is in the form of (8). If 
dtdx  in (29)  is zero but not sv  as given in (1), then it 

means that stringV  in (2) can be analyzed as 
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where xw  and tw  are assumed constant. Then (31) should 
be given as follows: 
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where 0=dtdx . The result in (32) is the same as the 
mechanical energy of a tensioned string without axial moving. 
However, it is impossible in the physical concept to explain 
that the mechanical energy of an axially moving string with 
constant xw  and tw  is the same as that of the tensioned 
string without axial moving. Thus, this gives another evidence 
that the method presented in [14] is not correct. 

 
4. CONCLUSIONS 

  

In this paper, the rate of change of an energy functional for 
axially moving continua, which involve a time-varying 
volume and a time-varying surface, has been investigated. The 
axially moving continua have been analyzed in view of 
Eulerian description since our attention is focused on what 
happens at a specific region of space as time passes. Even 
though an axially moving system has fixed boundary 
conditions, the volume and surface of the system cannot be 
considered as time-invariant (or fixed) because of the 
vibrations of the material part. Thus, the three-dimensional 
version of the Leibniz’s rule has been established and correctly 
applied to get the correct result on the time derivative of the 
energy functional. The material velocity given in field 
coordinates has been taken into account, but not the velocity 
of the time-varying surface bounding the time-varying 
volume. 
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