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1. INTRODUCTION 
 

The localization and path tracking problems for mobile 
robots have been given great attention by automatic control 
researchers in the recent literatures [1]-[4]. Motion control of 
mobile robots is a typical nonlinear tracking control issue and 
has been discussed with different control schemes such as PI, 
GPC based EKF and so on. In order to provide the control 
schemes with some degree of robustness, Neural Networks 
(NN) based controllers have been also proposed in the past 
[3]-[5]. Neural networks have become an attractive tool to 
model the complex nonlinear systems due to its inherent 
ability to approximate arbitrary continuous functions. On the 
other hand, an amount of research has been done on 
applications of Wavelet Neural Networks (WNNs), which 
combine the capability of artificial neural networks in learning 
from processes and the capability of wavelet decomposition, 
for identification and control of dynamic systems [6]-[9]. The 
WNNs can further result in a convex cost index to which 
simple iterative solutions such as the gradient descent rules are 
justifiable and are not in danger of being trapped in local 
minima when choosing the orthogonal wavelets as the 
activation functions in the nodes. In this paper, we present a 
WNN approach to the solution of the tracking problem for 
mobile robots that possess complexity, nonlinearity and noise. 
This network structure is helpful to determine the number of 
the hidden nodes and the initial value of weights with compact 
structure. In our control method, the control signals are 
directly obtained by minimizing the difference between the 
reference track and the pose of a mobile robot that is 
controlled through a WNN. And for the absolute localization, 
the data with various noises provided by odometric and 
external sensors are here fused together by means of an 
Extended Kalman Filter approach [10][11] for the pose 
estimation problem of mobile robots. This control process is a 
dynamic on-line process that uses the wavelet neural network 
trained via the gradient-descent method with estimates from 
EKF. Through computer simulations, we demonstrate the 
effectiveness and feasibility of the proposed control method. 
In Section , Ⅱ the pose estimation based on EKF is described 

for the accurate path planning with various noises. WNN 
control structure and design method are described in Section 

, and computer simulations are given in Section Ⅲ IV. Finally 
Section  presentⅤ s a brief conclusion.  
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2. POSE EXTIMATION BASED ON EKF 

 
2. 1 KINEMATIC MODEL OF MOBILE ROBT 

The kinematic model of mobile robot used in this paper is 
composed of two driving wheels and four casters, and is fully 
described by a three dimensional vector of generalized 
coordinates X  constituted by the coordinates  of the 
midpoint between the two driving wheels, and by the 
orientation angle 

),( yx

θ  with respect to a fixed frame as shown in 
Fig. 1. We have the equation for motion dynamics as  
follows:  

 

 
Fig. 1 Mobile robot and coordinate 
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where,  is the control variable which is each 

displacement of right and left wheels.  
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where,  poskposkposkposk LRBLRA −=+= ,

 
2. 2 POSE ESTIMATION OF MOBILE ROBOT 

Typical internal sensors are optical incremental encoders 
which are fixed to the axis of the driving wheels or to the 
steering axis of the vehicles. At each sampling instant the 
position is estimated on the basis of the encoder increments 
along the sampling interval. A drawback of this method is that 
the errors of each measure are summed up. For absolute 
localization, a proper set of sensors measuring must be 
provided. In this paper, vision sensor and incremental 
encoders are generally fused for the localization problem. The 
robot coordinates in a global coordinate can be described by 
nonlinear function (2), and as follows:  
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where, the random variables  and  represent the 

process and measurement noise, respectively. In this paper, we 
assumed that  is directly acquired from vision system with 
measurement noise. A discrete extended Kalman filter can 
then be designed as follows:  
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3. WAVELET NEURAL NETWORK 

CONTROLLER 
 

3 .1 WNN STRUCTURE 
In our WNN structure,  input, multidimensional 

wavelets, and two-output structure are considered as shown in 
Fig. 2, where,  inputs are composed of errors and past 
errors between reference trajectory and controlled trajectory, 

and output  and  are control variables. Each 
control variable is as follows:  

iN

iN

poskR

=

=

),

),E

γ

γ

poskL

Φ

Φ

jj

j

2

1

(

(E

jkz 2,1 ),j )( =E

z
2
1 2 




djk , 12,1

z−=

aa ,20,1

Φ

11c
12c

)(nex )(ney

20

 

∑∑

∑∑

==

==

++Ψ=

++Ψ=

iw

iw

N

k
kk

N

j
posk

N

k
kk

N

j
jposk

eaacL

eaacR

1
220

1
21

1
110

1
1

)(

)(

EE

      (5) 

where, 
jk

jkk
jk

N

k d
me

zwith
i

2,1

2,1
2,1

1
2,1 (

−
=∏Φ

=
φ  

waveletmotherz :exp)( 

−φ  

parametersWNNc jkk :},{ 2,2,1=γ  

 

 

11Φ 12 wN2Φ

Σ

10a
1iNa

1 )(ne
iN

LL

L

poskR _

Output
Node

Wavelet
Node

Input
Node

)(neθ )1( −nex )1( −ney )1( −neθ

Σ

poskL_

21c
22c wN

c2

a

2iNa

21Φ 22ΦLL

Fig. 2 Wavelet neural network structure 

3 .2 WNN CONTROLLER 
Usually, a WNN structure is used for the modeling of the 

dynamic systems, in our control system, we design the direct 
adaptive control system using WNN structure. The purpose of 
our control system is to minimize the state errors  

between the reference trajectory and the estimated trajectory 
of a mobile robot. For this purpose, we train the WNN’s 
parameters via the gradient-descent method with estimates 
from EKF. The overall control system is shown in Fig 3.  
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Fig. 3. Wavelet neural network based control system  

A WNN controller calculates the control input 
)]'()([)( kLkRku poskposk=  by training the inverse dynamics 

of plant iteratively. Because the WNN parameters cannot be 
updated directly through the variation rate ),( yJ γ  in the 
gradient-descent method, we train the parameters of WNN 
through the transformation of the output error  between 
the reference trajectory and the estimated trajectory of a 
mobile robot. 

)(ke
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Training Procedure:  
• Define the following cost function so as to train the WNN 
controller based on direct adaptive control technique.  
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• Calculate the partial derivative of the cost function with 
respect to the parameter set of a WNN controller, γ . 
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where,
u

uJ
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Ŷ)( is the feedforward Jacobian of estimates 

plant and is as follows:  
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The partial derivative 
γ∂
∂u  of the control input  with 

respect to the parameters of a WNN controller 

u

γ  can be 
calculated by using the equations from Eqn. (9) to Eqn. (14).  
• Update the WNN parameters. The minimization is 
performed by the following iterative gradient descent method. 
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where, η  is the learning rate of a WNN. 

From Eqns. (7) and (8), 
γ∂
∂u  is the gradient of the controller 

output, , with respect to parameters set, u γ , and the 
components of this vector are as the follows: 
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4. SIMULATION RESULTS 

 
In this section, we present simulation results to validate the 

control performance of proposed WNN controller with the 
estimator based on EKF for the tracking of a mobile robot. 
The control objective for our tracking system is to minimizing 
the error between the reference trajectory and the pose of a 
mobile robot that is controlled through a WNN controller with 
noises. The parameters used in this simulation and simulation 
results are shown in Table 1. This simulation considers the 
tracking of a trajectory generated by the following 
displacements:  
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Table 1 Parameters and simulation results 

Number of wavelet function 20 
Sampling time 0.01 

Learning rate 0.1 

Departure posture vector (5,5,0) 
Process noise covariance 1.0e-2 
Measurement noise covariance 1.0e-3 

x 0.2900cm 

y 0.6719cm Control result(MSE) 

θ 0.3936˚ 

 
Figure 4 shows the tracking control results of WNN 

controller with EKF for a mobile robot. Also, Figure 5 shows 
the control errors for tracking of a mobile robot.  
 

 
Fig. 4. Direct adaptive control based on WNN controller with 

EKF for tracking of a mobile robot 
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5. CONCLUSION 
 
In this paper, a WNN controller based on direct adaptive 

control scheme was presented for the solution of the tracking 
problem for mobile robots with various noises. In our control 
method, the control signals were directly obtained by 
minimizing the difference between the reference track and the 
pose of a mobile robot that was controlled through a WNN. 
And for the absolute localization, the data with various noises 
provided by odometric and external sensor were here fused 
together by means of an Extended Kalman Filter approach for 
the pose estimation problem. The control process was a 
dynamic online process that used the wavelet neural network 
trained by the gradient-descent method with estimates from 
EKF. In this work the WNN’s parameters were randomly 
initialized. Through computer simulations, we verified the 
effectiveness and feasibility of our WNN control method with 
EKF although the control errors were increased at the changed 
directions.  

Fig. 5. Position and orientation errors 
 
Fig 6 shows the control inputs of WNN and Fig 7 is feed 

forward Jacobian of a mobile robot system.  
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