
ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, KOREA

Forecasting Load Balancing Method by Prediction Hot Spots

in the Shared Web Caching System

Sung C. Jung∗ and Kil T. Chong∗∗

∗Control and Instrumentation Engineering, Chonbuk National University, Chonju 561-756, Korea

(Tel: +82-63-270-2478; Fax: +82-63-270-2451; Email:sungchil jung@hotmail.com)
∗∗Faculty of Electronics and Information Engineering, Chonbuk National University, Chonju 561-756, Korea

(Tel: +82-63-270-2478; Fax: +82-63-270-2451; Email:kitchong@moak.chonbuk.ac.kr)

Abstract: One of the important performance metrics of the World Wide Web is how fast and precise a request from users

will be serviced successfully. Shared Web Caching (SWC) is one of the techniques to improve the performance of the network

system. In Shared Web Caching Systems, the key issue is on deciding when and where an item is cached, and also how to

transfer the correct and reliable information to the users quickly. Such SWC distributes the items to the proxies which have

sufficient capacity such as the processing time and the cache sizes. In this study, the Hot Spot Prediction Algorithm (HSPA)

has been suggested to improve the consistent hashing algorithm in the point of the load balancing, hit rate with a shorter

response time. This method predicts the popular hot spots using a prediction model. The hot spots have been patched to the

proper proxies according to the load-balancing algorithm. Also a simulator is developed to utilize the suggested algorithm using

PERL language. The computer simulation result proves the performance of the suggested algorithm. The suggested algorithm

is tested using the consistent hashing in the point of the load balancing and the hit rate.

Keywords: cache, consistent hashing, HSPA, Hot spot

1. Introduction
As the World Wide Web becomes an important medium in

providing information to the users, it is necessary to have

better methods and techniques to transfer information effec-

tively and reliably. However, the current content delivery

network system may have failed to deliver prompt service

because network states are prone to unpredictable delays

and frequent failures. The swamped servers or the bottle-

neck in the network usually cause these delays and failures.

Swamped servers, facing more simultaneous requests than

their resources can support, will either refuse to serve cer-

tain requests or will serve them very slow. Any proxy is

limited in the number of users it can serve, and becomes a

bottleneck during periods of intense use. These problems can

be effectively addressed using Web caching, however network

and server infrastructure expansions have not kept pace with

the tremendous growth in Internet use. Therefore, it will be

impossible to meet users’ requests for quick service.

Recently, in order to satisfy a user’s request and utilize the

network’s resources effectively, it makes a requested quantity

to do a load balancing by distributing a proxy to several net-

works in the Shared Web Caching System (SWCS)[4]. SWCS

makes the response time quicker by connecting a user to a

proxy that is nearest to the network or to a proxy whose RTT

(Round Trip Time) [6] is less. And when utilized for its hash-

ing function [2, 3], it allows for the efficiency of proxies to

be maximized by preventing several proxies from duplicat-

ing the items. The conventional SWC distributes the items

based on the current status of the proxies, which could be, re-

ferred to as the static load balancing method. The suggested

method HSPA distributes the hot spot using the information

predicted for the proxies, and this could be called dynamic

load balancing. The information of the proxies is obtained

by the dnshelper. The dnshelper monitors every proxy in

the system calculating the load applied to the proxies. The

HSPA and the consistent hashing [2] use the information of

the hot spots for the load balancing.

The conventional SWCS patches the item that has been re-

quested and also the items that might be needed in the future

based on the current state of the requests. If the some of the

popular hot spot predicted patches to the proper proxies in

advance, it will improve the load balancing and the hit rate

of the SWCS.

In this study, the Hot Spot Prediction Algorithm (HSPA)

has been suggested to improve the conventional SWCS. This

method predicts the popular hot spots using a prediction

model. And the predicted hot spots will be patched to the

proper proxies according to the load balancing algorithm.

The suggested algorithm has advantages in the load balanc-

ing, hit rates and the shorter response time over the existing

SWC systems. The data file used for this study is the ac-

cess log file of NASA home page. The suggested algorithm

tested used a simulator developed using PERL language.

The computer simulation result proves the performance of

the suggested algorithm. The suggested algorithm is tested

using the consistent hashing in the point of the load balanc-

ing and the hit rate

2. Web Caching and Consistent Hashing
Web caching is usually categorized as a single mode and

shared web caching. The single mode is a simple Web

caching method that provides service by connecting multiple

users to a single proxy. If the proxy does not have the infor-

mation requested by a user, it will request the item from the

original content provider (CP) server. It stores the received

information for future requests from other users. But the sin-

gle mode has limitations in proxy load, network bandwidth,

hit ratio, latency, etc. since it processes all the requests in a

single proxy.

But the SWC [4], that is a processing method to distribute

a request to several proxies. In the SWC, if the item is in

the primary server the request is cleared up at the primary

server, however, if the primary server does not have the item

stored, the primary server will broadcast to get the item from

another server taking advantage of the ICP (Internet Cache

Protocol)[6] or the hash function [2, 3]. If none of the proxies

have the requested data, it will do an action like as the single

mode. Since it responds to requests in this manner, it has

better performance in proxy load, hit ratio, latency, network

bandwidth, etc. than the single mode.

One of the main issues in the SWCS is the load balancing

problem that makes requested quantities to distribute in each

of the proxies properly. In this study, by using the HSPA

and the consistent hashing [2] the load balancing will be

demonstrated. The load balancing is highly related to the hit

rate that is the most important factor in the content delivery

networks. The hit rate of the suggested algorithm is also

improved by the suggested HSPA proven by the computer

simulation.

A hashing function is used in the consistent hashing. First of

all, the standard hash function is discussed before reviewing

the operation principles of SWC using a consistent hashing.

For example, it is assumed there are 7 proxies in the net-

works. Then the items undergo a course of Proxy ID =

H(item) Mod 7 when it maps an item requested by a user

to the proxy, where Mod calculates the modulation of 7 and a

function H is the hashing function. If a proxy will be added

up or deleted from the networks, it will go through whole

mapping again. Consequently, the hit rate decreases and

the performance of proxy depreciates rapidly since it always

makes a new re-mapping if a proxy is added or deleted.

However, the consistent hashing makes a re-mapping for part

of the items not for all the items when a proxy is added or

deleted. This algorithm makes a mapping for hash values of

all the items to the unit circle between [0, 1]. A mapping

to the unit circle becomes random using the hash function.

With the same way, each of the proxies in the SWCS makes

a mapping to the unit circle using the hash function as well.

Method to search for a proxy in which each of the items are

allocated, that is to move clockwise from the item hash value

on the corresponding unit circle and to meet with the proxy

hash value, and the proxy takes charge of the item.

3. Hot Spot Prediction Algorithm (HSPA)
The method suggested in this study is similar to consistent

hashing with the round robin DNS[1] except the prediction of

the hot spot cached in the proxies. A prediction of hot spot

is accomplished by analyzing the items requested to a partic-

ular proxy and several items that have been requested at the

most. The several hot items that have been indicated by the

hot spot finder are patched in prior to the proxies which are

possible to distribute by using the existing requested quan-

tities and the time series or another method on the based of

predicted request quantities. They have been patched to a

proxy, which is near to a user using this method, it will be

possible to increase the performance of the content delivery

network by preparing a huge amount of requests suddenly.

Using an access log in the NASA home page directly in this

study, not a prediction model has represented the prediction

effect. Data generation and system constitution according

to this suggested method are treated with in the following

chapters in detail.

Client

Web Server

Top Layer DNS

Bottom Layer DNS

Proxy #1
 Proxy #3
Proxy #2

1
(1)

2
(3)

3
(4)

4
(5)

5
(2)

Data

Base

Existent sequence
 Suggested sequence

Fig. 1. System constitution of HSPA

The HSPA system constitutes as shown in Fig. 1. This

system has analogous structure as in the global hosting sys-

tem [10]. When a user requests to a CP server, the upper

DNS interprets the domain and then transfers it to a lower

DNS address which is nearest to a user geographically. And

then the lower DNS transfers it to a nearest host IP address.

Therefore, the lower DNS makes a virtual name to map to a

real IP. At that time a user requests a desired item using an

address of proxy provided with the lower DNS. If the proxy

has item, he will bring the item, if not, the proxy will request

an item to the original CP server to provide a user with it

and save it in its memory, for future use.

As shown in Fig. 1 progress of 5 has been conducted in prior

by analyzing NASA access log and predicting hot spot. In

the consideration of the loads given to each of the proxies,

they are patched to the proxy of low load.

4. Experimental Data
The access log file in the NASA site has been used for pro-

ducing the prediction data. The access log analysis method

necessary for the process to predict a hot spot, characteris-

tics of the data that are explained as follows:

4.1. Analysis of access log file

An access log is a file in which all the jobs conducted through

a web server have been recorded. When a user connects to

a web server (or proxy), all the jobs will have been stored in

an access log as data. Explaining in detail, a demand from

a user to look at a particular web page makes many items

related to the corresponding web page accessible to the web

server. Therefore, the information on all stages to process

a demand from a user including not only a particular web

page demanded by a user but also embedded (image data,

link data, etc) files, and the like related to the corresponding

web page are saved in a access log. Through an analysis of

the access log, we can know the information on the number

of demanded data, access time, number of visitors, visiting

route, and so on. So the access log becomes important data

to comprehend the purposes that a user has when visiting a

site.

Also an access log contains various information on the jobs

conducted by the web server, not only a demand and suc-

cess or failure of a particular job, but also information on the

resolution method when it fails. A NASA access log used in

this study records the following contents.

in24.inetnebr.com − −[01/Aug/1995 : 00 : 00 : 01 −
0400]”GET/shuttle/missions/sts − 68/news/sts − 68 −
mcc− 05.txtHTTP/1.0”2001839

The above recorded contents are composed of 7 kinds of

fields. The fields consist of Host, Identification, User Au-

thentification, Time Stamp, HTTP Request Field, Status

Code, and Transfer Volume in sequence.This study is used

to the Time Stamp and HTTP Request Field among the 7

kinds of fields.

4.2. Characteristics of the Experimental Data

Analysis of the NASA access log, indicated that the data

pattern follows Zipf’s law [5]. But the percentage of each

popular item is not large enough to apply the prediction.

Therefore, the experimental data file is generated using the

Surge [7] program, a load generator developed in Boston Uni-

versity. The experimental data used in this study have been

regenerated with 1,000 items using the Surge,and the total

size is 18MB.

The round robin DNS method executes a load balancing in

several proxies sequentially by reading in a network status

from the DNS zonefile. It is assumed that to update the

zonefile takes ∆ period of time. The consistent hashing will

not know the hot spot change by looking at its current data

if the hot spot changes while the zonefile is updated. The

consistent hashing will recognize the change of the hot spot

after the zonefile updated. The HSPA has advantages over

the consistent hashing during the time period of ∆t. HSPA

aims to minimize the performance degeneration caused by

a change of hot spot by predicting the hot spot that will

change during the time period of ∆t and distributing them

in each of the proxies.

Fig. 2 has been prepared by adding up for the hot spots

of rank No.1 and 2 as a function of time. When a load

balancing is carried out in a real system for all the hot spots

through round robin, if the requested quantities in each of

the proxies are 40, 50, and 50 respectively, it shall be equal

to the total sum. Therefore, a load balancing can be carried

out in each of the proxies by using the data and predicting

the hot spots.

5. Simulation
The simulator has been constituted to conduct a simulation

by the existing round robin and the round robin using hot

spot prediction method suggested in this study as well.

Zoom IN

Fig. 2. Trend of total requested quantities as a function of

time

5.1. Simulation Method

Varying the number of proxies affects the memory size and

processing time of the server to restrict the performance of

the CP server allowed for simulations. The cache policy of

memory has followed the type of Least Recently Used (LRU)

to restrict a storage space of the proxy and the type of service

is First In First Out (FIFO) [9]. A processing time of the

proxy is controlled by an option called bound, which is a time

to process one item. Parameter bound was used in variable

that decide success and miss of service. Also the processing

state of item is decided according to a time delay. Character

A is defined as the time interval required in each of the items,

such as A is equal to 30 min. divided by the number of items

in 30 minutes, if the simulator has been processing with data

of 30 minutes.

Therefore, it passed a time of A upon a request of item. It

did not make a miss if a request has been processed within

a time of bound less than A. But it made a miss if a request

has not been processed within a time of bound greater than

A. When a requested data has been stored in a queue, the

process is called a hit, unless it is called miss. Therefore,

number of Hits / total number of items * 100 becomes

hit rate in this simulation.

The processing procedures of simulation are as follows: Ini-

tially, various performance options are set up in Test.pl pro-

gram, and collect load states of each proxy in the SWCS to

make a prediction. And then the items produced by Surge

are inputted according to the date and hours. The input item

is hashed using MD5 [9], and then stored into the selected

proxy server hashed according to the designed algorithm.

The loads of proxy servers are measured in the same time.

In the experiment, 1,000 virtual caches have been generated

to apply consistent hashing.

A subroutine called ’run’ in the module Virtual.pm takes

charge of a practical simulation, in which all the data are

processed. At first, items have hashed using the MD5 in

the module Dns.pm, and then have mapped in 1,000 virtual

caches where each of the proxy servers took charge. And then

the hashed items allocated to the proper proxies. At this

stage, the current position of hot spot should be determined

among the proxies in order to process the hot item by round

robin, since it could be allocated in a next proxy when a next

hot spot has entered in. When the input is not a hot spot,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

120

140

D
ev

ia
tio

n
ra

te
(%

)

Compare consistent hashing to HOPA

consistent hashing(10)

HSPA(10,10)

(10,8)
(10,8) (10,6)

(10,4)

(8,8) (8,6) (8,4)
(6,6)

(6,4)

(4,4)

HSPA(10)

(8) (6)

(4)

Fig. 3. Load deviation in proxy servers

it hashed by MD5 and mapped by the hashed virtual cache.

5.2. Performance Evaluation

The load balancing and hit rates have been investigated for

the consistent hashing algorithm and the HSPA predicting

the hot spots based on round robin DNS method through

this experiment. Fig. 3 shows the standard deviations of

load distributions in each of the proxies of the consistent

hashing and HSPA, in which the numbers of hot spots to be

distributed have been considered as well.

As shown in the figure, a better load distribution is obtained

when it has been participated up to the priority rank No. 2

than when it did the priority rank No. 1 only. When two of

the hottest items have been participated in the load distri-

bution such that the hottest item is distributed to 8 proxies

and the second hottest items are distributed into six proxies,

it gives the best performance. Therefore, when several hot

spots are distributed, it is the key point to what number of

proxies has been distributed. It shows us the principle that

a load distribution should be done dynamically.

5.3. One Hot Spot Distribution

5.3.1 Performance in the Equal Processing Time

Fig. 4 and 5 show the comparison of hit rates at different

speeds of the consistent hashing and the HSPA. Ten proxy

servers are used in this experiment. The number of proxies

10 up to 4 did an experiment for the methods by reducing

with 2. Among those, the prediction methods HSPA whose

hit rates are the best when the number of proxies was 4 and

the queue size was 10. And as a queue size increased, it had

the highest hit rate when the number of distribution proxies

was 6.

The second experiment was done when the processing time

was slow. In this case, the highest hit rate arises when the

queue size was 10, which was the minimum, and the number

of distribution proxies was 6. And as a queue size increased,

it had the highest hit rate when the number of distribution

proxies was 6.

5.3.2 Performance in the Equal Queue Size

In Fig. 6, it shows us a graph how the hit rate varies as the

processing speed slows under a condition that the queue size

was equaled to 30 constantly. As shown in this Fig.6, the

prediction method has better hit rates than the method of

10 20 30 40 50 60
55

60

65

70

75

80
Graph by change of queue size about the equal processing time(req/2sec)

cache size

hi
t r

at
e(

%
) Consistent hashing(10)

HSPA(6)
HSPA(4)

Distribution of one hot spot

Fig. 4. Hit rete when speed is req/2sec

10 20 30 40 50 60
36

38

40

42

44

46

48

50
Graph by change of queue size about the equal processing time(req/10sec)

cache size

hi
t r

at
e(

%
)

Consistent hashing(10)
HSPA(8)
HSPA(6)

Distribution one hot spot

Fig. 5. Hit rate when speed is req/10sec

consistent hashing algorithm. It had better hit rates when

the items were distributed into six proxy servers whose pro-

cessing time was fast and when the items were distributed

into 8 proxy servers for the part whose processing time was

slow.

01 02 04 06 08 10 12
35

40

45

50

55

60

65

70

75

80

85
Graph by change of processing speed about the equal queue(size 30)

processing time (req/sec)

hi
t r

at
e(

%
)

Consistent hashing(10)
HSPA(8)
HSPA(6)

Distribution of one hot spot

Fig. 6. Hit rates when queue size is equal(30)

As shown above, a better hit rate for a request from a user

could be obtained to lower the number of proxies to be dis-

tributed by considering the total job quantities in the area

10 20 30 40 50 60
55

60

65

70

75

80

85
Graph by change of queue size about the equal processing time(req/2sec)

cache size

hi
t r

at
e(

%
)

Consistent hashing(10)
HSPA(6 6)
HSPA(4 4)

Distribution of two hot spots

Fig. 7. Hit rete when speed is req/2sec

10 20 30 40 50 60
36

38

40

42

44

46

48

50

52

54

56
Graph by change of queue size about the equal processing time(req/10sec)

cache size

hi
t r

at
e(

%
)

Consistent hashing(10)
HSPA(8 8)

Distribution of two hot spots

Fig. 8. Hit rate when speed is req/10sec

that the processing speed is fast, and as the processing speed

is decreased as more number of proxies are distributed.

5.4. Two Hot Spots Distribution

5.4.1 Performance in the Equal Processing Time

In section 5.3.1, only one hot spot of the most popular was

distributed, however, in this section two hot spots were par-

ticipated in the load distribution that shown in Fig.7 and 8.

The better of hit rates when two hot spots were participated

than when one hot spot did. The prediction method HSPA

has an averaged hit rate of more than 5% compared with the

method of consistent hashing.

For a slow processing time, the best hit rate has been ob-

tained when both first hot spots and second hot spots were

distributed to 8 proxies. The prediction method has an av-

eraged hit rate of more than 4% compared with the method

of consistent hashing .

The legend of the figure Prediction(a, b) indicates the first

number a in the parenthesis means the number of proxies for

the rank No.1 hot spot distributed and the second element b

means the number of proxies that the rank No.2 hot spot will

be distributed. The results show the better hit rates when

the most hot spots are distributed into four proxies and the

second hot items are also distributed into four proxies when

the proxies processing time was fast. As the processing time

gets slower the pair of proxies for the hottest items and the

01 02 04 06 08 10 12
35

40

45

50

55

60

65

70

75

80

85
Graph by change of processing speed about the equal queue(size 30)

processing time (req/sec)

hi
t r

at
e(

%
)

Consistent hashing(10)
HSPA(8 8)
HSPA(6 6)
HSPA(4 4)

Distribution of two hot spots

Fig. 9. Hit rates when queue size is equal(30)

second hot spots are distributed into (6, 6) and (8, 8) gives

good hit rates.

5.4.2 Performance in the Equal Queue Size

In Fig. 9, same method with that of in Fig. 6, it shows

us a graph how the hit rate varies as the processing time

slows under a condition that the queue size was equaled to

30 constantly.

It is important for a number of proxies to distribute as the

processing time becomes slower. However, it could get a

worse result even when a larger number of proxies have been

distributed. It was lower 0.6% when (10, 10), a larger num-

ber, has been distributed than when (8, 8).

The total workload should be considered to determine a num-

ber of distribution proxies in the SWCS. A small number of

proxies should be distributed when a small workload and a

fast processing time but a many number of proxies should be

distributed when large workload and a slow processing time.

All the simulation showed the HSPA gives better hit rates

than the consistent hashing.

6. Conclusion
In this study, the Hot Spot Prediction Algorithm (HSPA) has

been suggested to improve the performance of the consistent

hashing algorithm. This method predicts the popular hot

spots using a prediction model. Also, the predicted hot spots

will be patched to the proper proxies according to the load-

balancing algorithm.

The modified access log file of NASA home page has been

used as the experimental data. The data obtained from the

NASA access log file cannot be directly applied to this study,

therefore, the new experimental data has been produced us-

ing the Surge program based on the access log file of the

NASA home page that follows the Zipf’s law. The suggested

algorithm was tested using a simulator that had been devel-

oped using the PERL language. The results of the computer

simulation prove the performance of the suggested algorithm.

The suggested algorithm is compared to the consistent hash-

ing in the view of the load balancing and the hit rate for the

various combinations of hot spots and the proxies used. The

computer simulation results shows that the suggested HSPA

is superior to the consistent hashing algorithm.

In conclusion, the suggested HSPA introduce a new predic-

tion method into the network system area, improve the hit

rate of the request in the Internet and also it improves the

load balancing of the shared web caching system.

References
[1] Han-Chieh Chao and Tin Yu Wn et al.: The network

topology based domain name service. Parallel Process-

ing, Proceedings. 1999 International Workshops, (1999)

528 – 533

[2] David Karger et al.: Web Caching with Consistent

Hashing. In Proceedings of the 8th International World

Wide Web Conference, (1999)

[3] V. Valloppillil and K. Ross.: Cache ar-

ray routing protocol v1.1. Internet Draft,

http://www.globecom.net/ietf/draft/draftvinod-

carpv103.html, February (1998)

[4] Ross, K.W.: Hash routing for collections of shared Web

caches.IEEE Network, Vol.11. Issue: 6 , Nov/Dec (1997)

37 – 44

[5] Lee Breslau et al.: Web Caching and Zipflike Distribu-

tions : Evidence and Implications. IEEE INFOCOM,

(1999) 108–121

[6] D. Wessels and K. Claffy.: Application of Internet

Caching Protocol(ICP), version 2. Internet Draft:draft-

wesselsicpv2appl00. Work in Progress., Internet Engi-

neering Task Force, May (1997)

[7] P. Barford and M.E.Crovella.: Generating representa-

tive web workloads for network and server performance

evaluation. In Proceedings of ACM SIGMETRICS Con-

ference, (1998) 151 – 160

[8] Woei-Luen Shyu and Cheng-Shong Wu et al.: Ef-

ficiency analyses on routing cache replacement algo-

rithms. Communications, ICC 2002. IEEE International

Conference, Vol. 4. (2002) 2232 – 2236

[9] R. Rivest.: The MD5 Message-Digest Algorithm. RFC

1321, Network Working Group, April (1992)

[10] Leighton et al.: Global hosting system. united states

patent & trademark office, auguest 22 (2000)

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2137
	page21: 2138
	page31: 2139
	page41: 2140
	page51: 2141
	page61: 2142

