I CCAS2003

October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

Development of a Frame Buffer Driver for Embedded Linux Graphic System

Ga-Gue Kim, Woo-Chul Kang, Young-Jun Jung, and HyB8eok Lee

Embedded S/W Technology Center, ETRI, Daejeon, &ore
(Tel : +82-42-860-1123; E-mail: {ggkim, wchkangnig, hyslee@etri.re.kr)

Abstract: A frame buffer device is an abstraction for theptia hardware. It allows application software t@ess the graph
hardware through a well-defined interface, so thatsoftware doesn’t need to know anything aboetidhv-level inteface stuff
We develop a frame buffer driver for VIA’s CLE26@aghic system based on ‘Qplus’, an embeddeul|operating syste
developed by ETRI. Then, it will be seen that aanfe buffer system is applied to embedded solutoeh as movie player dn

X server successfully.

Keywords: frame buffer, embedded linux, Qplus, abstract clenso

1. INTRODUCTION

Many machines (M68K, SPARC, PowerMac) use graphical
console because either the hardware does not fufyBA)
text mode, or because the firmware programs thdweae
into a graphical mode. Thus the linux kernel needse aware
of this and support graphical consoles on theddteahtures.

Graphical consoles will also gain more importancettoe
Intel platform, as VGA compatibility will be phaseslit by
many graphics chipset manufacturers in the neamwdutAn
early example of this the Cyrix MediaGX], which pides
VGA compatibility through its BIOS only.

The frame buffer device provides an abstraction tfar
graphics hardware. It represents the frame buffesame
video hardware and allows application software doeas the
graphics hardware through a well-defined interfese, the
software does not need to know about the low |évaidware
register) stuff (except for hardware acceleratibp)[

Since years there has been minor support for graphi
consoles in the linux kernel, but it differed a knong the
different platforms. Starting with kernel 2.1.10he frame
buffer device abstraction become completely integtan the
standard kernel sources and will become the stdnday to
access graphics hardware. But it is definitely netv: it
originated from linux/M68K at the end of 1994 andsh
proven to fulfill its task during the previous ysar

The frame buffer device abstraction has the folitawi
advantages:

(1) It provides a unified method to access graphics
hardware across different platforms.

(2) Drivers can be shared among different archirest
which reduces code duplication. There were alretinge
different drivers for the ATl Mach64 before. In thieal case,

a frame buffer device driver contains a chipsevedricore,
with machine and bus dependent probe
code(Zorro/PCI/ISA/Open Firmware/...).

(3) It provides simple multi-head: currently up &frame
buffer devices (displays) are supported. Unfortelyathe
input part of the console subsystem is not readyrfalti-head
yet.

(4) On boot up, you get one or more penguin logath(or
without beer) The more CPUs you have, the more yiesg
you will see.

2. FRAME BUFFER INTERNAL API

Now that we understand the basic ideas behind vided
technology and mode setting, we can now look at hiosv

framebuffer devices abstract them. Also, we wilk gbat
fbdev actually handles most of the mode settingeisgor you
to make life much easier. In the older API, thesmle code
was heavily linked to the framebuffer devices. Tieaver API
has now moved nearly all console handling code fhtmn
itself. Now, fbcon is a true wrapper around theewictard’s
abilities. This allows for massive code reductiord seasier
driver development. A good example of a framebudfigver
is the virtual framebuffer (vfb). The vfb driver it a true
framebuffer driver. All it does is map a chunk oémmory to
userspace. It's used for demonstration purposeteatidg.

2.1 Data Structures

The framebuffer drivers depend heavily on four data
structures. These structures are declared in fbhiey are
fb_var_screeninfo fb_fix_screeninfp fb_monospegs and
fb_info The first three can be made available to and from
userland. First let me describe what each meanhawdhey
are used.

fb_var_screeninfds used to describe the features of a video
card you normally can set. Witib_var_screeninfoyou can
define such things as depth and the resolutiorvyemt.

The next structure i$b_fix_screeninfo This defines the
properties of a card that are created when yoa sebde and
can't be changed otherwise. A good example istdre of the
framebuffer memory. This can depend on what modsets
Now while using that mode, you don't want to habe t
memory position change on you. In this case, thaewi
hardware tells you the memory location and you havesay
about it.

The third structure igb_monospecsin the old API, the
importance ofb_monospecswias very little. This allowed for
forbidden things such as setting a mode of 800x@0@& fix
frequency monitor. With the new AFRh_monospecprevents
such things, and if used correctly, can preveniaitar from
being cooked.

The final data structure #_infa. This defines the current
state of the video caréb_infois only visible from the kernel.
Inside offb_info, there exist db_opswhich is a collection of
needed functions to make fbdev and fbcon work.

2.2 Driver Layout

Here | describe a clean way to code your drivergoad
example of the basic layout is vfb.c. In the exangiver, we
first present our data structures in the beginrohghe file.
Note that there is néb_monospecsince this is handled by
code in fomon.c. This can be done since monitors ar
independent in behavior from video cards. Firstde@ne our
three basic data structures. For all the datatstres | defined
them static and declare the default values. Thsoreado this

2116

is because it's less memory intensive than to @toa piece of
memory and filling in the default values. Note thavers that
support multihead (multiple video cards) of the eacard,

then thefb_info should be dynamically allocated for each card

present. Fofb_var_screeninfandfb_fix_screeninfpthey still
are declared static since all the cards can béosete same
mode.

2.3 Initialization and boot time parameter handling

There are two functions that handle the video edrboot
time:

int xxfb_init(void);
int xxfb_setup(char*);

In the example driver as with most drivers, thesefions
are placed at the end of the driver. Both are earyg specific.
In order to link your driver directly into the keshy both of
these functions must add the above definition wittern in
front to fomem.c. Add these functions to the foliogv in
fomem.c:

static struct {
const char *name;

int (*init)(void);
int (*setup)(char*);
} fb_drivers[] __initdata = {
#ifdef CONFIG_FB_YOURCARD
{"driver_name", xxxfb_init, xxxfb_setup },
#endif

Setup is used to pass card specific options froenbihot
prompt of your favorite boot loader. A good examigte

boot: video=matrox: vesa: 443

The basic setup function is:

int __init xxxfb_setup(char *options)
char *this_opt;

if (loptions || *options)

return O;
for (this_opt = strtok(options, ","); this_opt;
this_opt = strtok(NULL,)

if (Istrcmp(this_opt, "my_option")) {
/* Do your stuff. Usually set some static flagstttie
driver later uses */
} else if (Istrncmp(this_opt, "Other_option:", 5))
strcpy(some_flag_driver_uses, this_opt+5);
}else ...

}

The xxfb_init function sets the initial state oéthideo card.
This function has to consider bus and platform liagdince
today most cards can exist on many platforms. Fsrtigpes
we have to deal with, there are PCI, ISA, and zoAiso,
some platforms offer firmware that returns inforinatabout
the video card. In this case, we often don't needeal with
the bus unless we need more control over the tatdis look
at Open Firmware that's available on PowerPCs.oli are
going to use Open Firmware to initialize your caydy need
to add the following to offb.c.

#ifdef CONFIG_FB_YOUR_CARD
extern void xxxfb_of_init(struct device_node *dp);
#endif /* CONFIG_FB_YOUR_CARD */
Then in the function offb_init_driver, you add stimmey
similar to the following:
#ifdef CONFIG_FB_YOUR_CARD
if (Istrncmp(dp->name,"Open Firmware number of your
card ", size_of_name)) {
xxxfb_of_init(dp);
return 1;

}
#endif /* CONFIG_FB_YOUR_CARD */

If Open Firmware doesn't detect your card, OpemWare
sets up a generic video mode for you. Now in yaired you
really need two initialization functions.

The next major part of the driver is declaring fhections
of fb_opsthat are declared iib_infofor the driver.

The first two functionsxxfb_operandxxfb_releasecan be
called from both fbcon and fbdev. In fact, thats tise of the
user flag. If user equals zero then fbcon wantadzess this
device, else it's an explicit open of the framebufflevice.
This way, you can handle the framebuffer device the
console in a special way for a particular videadc#&or most
drivers, this function just doesMOD_INC_USE_COUNDr
MOD_DEC_USE_COUNT

These are the functions that are at the heart densetting.
There do exist a few cards that don't support mabdeging.
For these we have this function return an -EINVALédt the
user know he/she can't set the mode. Actually,vaetdoes
more than just set modes. It can check them as. well
fb_var_screeninfothere exists a flag called activate. This flag
can take on the following value$tB_ACTIVATE_NOW
FB_ACTIVATE_NXTOPENNdFB_ACTIVATE_TEST

FB_ACTIVATE_TESTells us if the hardware can handle
what the user requesteBlB_ACTIVATE_NXTOPENets the
values wanted on the next explicit open of fbdele Tinal
oneFB_ACTIVATE_NOWhecks the mode to see if it can be
done and then sets the mode. You MUST check theemod
before all things. Note that this function is veard specific,
but | will attempt to give you the most generalday The
basic layout then faxxxfb_set_vars:

static int vfb_set var(struct fb_var_screeninfo rivatruct
fb_info *info)
{

int line_length;

/* Basic setup test. Here we look at what the ymsesed
in that he/she wants.For example to test the fb_s@eeninfo
field vmode like its done in vfb.c.Here we sedéf user has
FB_VMODE_YWARP. Also we should look to see if #feg u
tried to pass in invalid values like 17 bpp (bies pixel) */

I* Remember the above discussion on how moniters se
mode. They don't care about bit depth. So youddade the
checking into two parts. One is to see if the wdenged a
mode from say 640x480 at 8 bpp to 640x480 at 32
bpp.Remember the var in fb_info represents theeatirvideo
mode. Before we actually change any resolutiondhawe to
make sure the card has enough memory for the nesle.mo
Discovering how much memory a video card has vdrims
card to card. Also finding out how much memoryharee is
done in xxxfb_init since this never changes uniess add
more memory to your card, which requires a rebobthe
machine anyway. You might have to do other tegisrding
on make of your card. Note the par filed in fb_inftis is
used to store card specific data. This data cancaféet_var.

2117

Also it is present to allow other possible drivémat could
effect the framebuffer device such as a specialedrfor an
accel engine or memory mapping the Z buffer onrd ta

/* Summary. First look at any var fields to seehiéy are
valid. Next test hardware with these fields withsetting the
hardware. An example of one is to find what the_llength
would be for the new mode. Then test the followihg:

if (line_length * var->yres_virtual) > info->fix.;mem_len)

return -ENOMEM,;

if (info->var.xres != var->xres || info->var.yres!=
var->yres || info->var.xres_virtual != var->xres_viual ||
info->var.yres_vitual != var->yres_virtual) {

/* Resolution changed !!! */

/* Next you must check to see if the moruém
handle this mode. Don't want to fry your monitorroess up
the display really badly */

if (fomon_valid_timings(u_int pixclock, u_int htbta_int
vtotal, const struct fb_info *fb_info))

[* Can't handle these timings. */

return -EINVAL;

/* Timings are okay. Next we see if we really wemt
change this mode */

if ((activate &
FB_ACTIVATE_NOW) {

FB_ACTIVATE_MASK) ==

/* Now lets program the clocks on this card. Here tode
is very card specific. Remember to change anydfifdfix in
info that might be affected by the changing of réslution.
*/

info->fix.line_length = line_length;

/* Now that we have dealt with the possible chaggin
resolutions lets handle a possible change of lpthler/

if (info->var.bits_per_pixel = var->bits_per_pixg[

if ((err = fb_alloc_cmap(&info->cmap, 0, 0)))
return err;

}

/* We have shown that the monitor and video card ca
handle this mode or have actually set the mode.xt e
fb_bitfield structure in fb_var_screeninfo is fdlén. Even if
you don't set the mode you get a feel of the mefmd you
really set it. These are typical values but maydiiterent for
your card. For truecolor modes all the fields matt&or
pseudocolor modes only the length matters. Thusttedl
lengths should be the same (=bpp). */

switch (var->bits_per_pixel) {

case 1:

case 8:

/* Pseudocolor mode example */
var->red.offset =0;
var->red.length =8;

var->green.offset = 0;
var->green.length = 8;
var->blue.offset =0;
var->blue.length = 38;
var->transp.offset = 0;
var->transp.length = 0;

break;

case 16: /* RGB 565 */
var->red.offset =0;
var->red.length =5;

var->green.offset =5;
var->green.length = 6;
var->blue.offset =11,

var->blue.length =5;
var->transp.offset = 0;
var->transp.length = 0;

break;

case 24: /* RGB 888 */
var->red.offset =0;
var->red.length =8;

var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 16;
var->blue.length =8;
var->transp.offset = 0;
var->transp.length = 0;

break;

case 32: /* RGBA 8888 */
var->red.offset =0;
var->red.length =8;

var->green.offset = 8;
var->green.length =8;
var->blue.offset = 16;
var->blue.length =8;
var->transp.offset = 24;
var->transp.length = 8;
break;

/* Yeah. We are done !l */

}

The functionxxxfb_setcolregs used to set a single color
register for a video card. To use this properlyy youst
understand colors, which is described above. Thisine sets
a color map entry. The regno passed into the reugpresents
the color map index which is equal to the colort'tha
composed of the amount of red, green, blue, and algha
that are also passed into the function. For psealdomodes,
this color map index (regno) represents the pisdlie. So if
you place a pixel value of regno in video memoy get the
color that's made of the red, green, blue that gassed into
xxxfb_setcolregNow for truecolor and directcolor mode, it's
a little different. In this case, we simulate ayzse color map.
The reason for this is the console system alwagsaheolor
map, which has 16 entries. Ifb_info, there exist the
pseudo_palette, which gives a mapping from a ndorcoap
mode to a color map based system. The pseudo ealetiys
has 17 entries. The first 16 is for the consol®mobnd the
last one for the cursor. So if we wanted to disgley 4 entry
in the color map of the console, we would placevhlee of
info->psuedo_palette[4] directly into the video nwwn This
is, of course, taken care of by fbcon. You justchieecode the
"formula” that does this translation. An examplddias for
32-bit mode:

red >>=8;

green >>= §;

blue >>=8;

info->pseudo_palette[regno] =
(red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset);

Here, we first scale down the color componentshiador
passed to set_colreg is 16 bits in size. For 32+oitle, each
color is 8 bits in size. Next, we OR the colorsetitgr after we
have offseted them. The offset is used becausgitktlayout
in 32 bits could be RBGA, ARGBA, etc. In setcol_iag/fb.c,
is the standard way to deal with packed pixel farafavarious

2118

image depths. Regno is the index to get this paaticolor.
That does it for required functions besides theofeeeded

accel functions, which has not been discussedfyiie video

card doesn't support the function, then we justepka NULL

in fb_ops. The next function in fb_ops xgxfb_blank This

function provides support for hardware blanking. r Fo

xxxfb_blankthe first parameter represents the blanking modes

available. They are VESA_NO_BLANKING
VESA_VSYNC_SUSPENDVESA HSYNC_SUSPENDand
VESA_POWERDOWNESA_NO_BLANKIN@®owers up the
display again.VESA_POWERDOWNurns off the display.
This is a great power saving feature on a laptop.

The next optional function is<xxfb_pan_display This
function enables panning. Panning is often useddwlling.

The ioctl function gives you the power to take atage of
special features other cards don't have. If yow &anothing
special then just give thifb_opsfunction a NULL pointer.
The sky is the limit for defining your ioctl calls.

There exists a default memory map function for thdmit
sometimes it just doesn't have the power you tndegd. A
good example of this is video cards that work irarsp
workstations that need their own mmap functionsabee of
the way sparcs handle memory is different from othe
platforms. This is true even for sparcs with PC3dzu

Now here is the next class of functions that argéoopl --
xxxfb_accel_initandxxfb_accel_donexxxfb_accel_initreally
depends on the card. It is intended to initialize &ngine or
set the accel engine into a state so that you an the
acceleration engine. It also ensures that the foaffer is not
accessed at the same time as the accel enginecdiisck a
system. Usually, there exists a bit to test to ifemn accel
engine is idle or if the card generates an interrBpr cards
that used the old fb_rasterimg, this function regfait. Some
cards have separate states for 3D and 2D. Thistifunc
insures that the card goes into a 2D state. Justage a
previous application set the accel engine into asie or
made the accel engine very unhappy. The next fomdtiat
encompasses this setxsxfb_accel_doneThis function sets
the video card in a state such that you can witethie
framebuffer again. You should provide both funcsighyour
driver uses even one hardware accelerated funciitwe
reason being is to ensure that the framebuffeotsancessed
at the same time as the accel engine.

Finally, the third class of fb_op functions. Likket first,
they are required. If your card does not suppoyt @nthese
accelerated functions, there exist default functifor packed
pixel framebuffer formats. They arecfba_fillrect
cfba_copyarepandcfba_imgblit If your driver supports some
but not all of the accels available, you can stk some of
these software emulated accels. Each software-ésdugcel
is stored in a separate file. Now lets describeheaccel
function. Before we discuss these functions we rteedote
not to draw in areas pass the video boundarigsdtes, you
need to adjust the width and height of the areaavtid this
problem.

The first function just fills in a rectangle staiat x1 and
y1 of some width and height with a pixel value @icked
pixel format. If the video memory mapping is notd&mect
mapping from the pixel value (not
FB_TYPE_PACKED_PIXBL you will have to do some
translating. There are two ways to fill in the eaaile,
FBA_ROP_COPY and FBA_ROP_XOR FBA_ROP_XOR
exclusive ORs the pixel value with the current pixelue.
This allows things like quickly erasing a rectaragudrea. The
other function just directly copies the data.

The next function isxxfb_copyarealt just copies one area

of the framebuffer at source x and source y of swiah and
height to some destination x and y.

The final function isxxxfb_imageblt This function copies
an image from system memory to video memory. Yaugst
really fancy here but this is fbdev, which has phepose of
mode setting only. All the image blit function doissdraw
bitmaps, image made of a foreground and backgraohat,
and a color image of the same color depth as #radbuffer.
The second part is used to draw the little penguifise
drawing of bitmaps is used to draw our fonts.

3. QPLUSTARGET BUILDER

Current embedded systems increasingly demand the
services of a sophisticated, state-of-the-art dperasystem.
Many such systems require advanced capabilities likgh
resolution and user-friendly graphical user integ{&Uls);
TCP/IP connectivity; substitution of reliable (alwdv power)
flash memory; support for 32-bit high-speed CPUs.

These needs led many embedded system developsuko |
Linux as a convenient and low-cost way to solveirthe
problems. Linux is open-source and has many modsn
functionalities required for those systems, andsupports
many platforms and devices also.

But embedded Linux lacks of convenient developnieols
which help developer configure, build and deploy fystem.
Linux and most application on it are open-source #mat
means you must do every chore to build a workingedded
Linux system.

If you do embedded Linux development, First, yoech&®d
install cross tool-chain, libraries and headesfildnd the next
step is creating kernel and root image. In thip,sg@u must
configure and build every needed components. Tlyen,
should create bunch of boot scripts and configonafiles
(usually placed in /etc directory). Finally, you shereate and
transfer bootable image to the target board. Figushows
general development sequence of embedded Linux.

C Build cross-toolchain

N2

Configure/ Build kernel

e

Configure/ Build basic applications

e

Build root filesystem

Build bootable image

e

Deploy to the target (NFS, initrd,...)
N

Y AYAY YN

Develop your application

-
j)\/&)\/\/\)j(\)

C Optimize

l
(_ Deploy final image to the target(flashing,...))

Fig. 1 Development procedure Embedding Linux.

Most of these procedures have to be done repeatidily
the final deployment. Configuration, build and dsphent to
the target has been done manually and separatéhowti
assistance of integrated tools. It is highly epoone and
time-consuming job. Worst of all, Linux is not well
documented. It made embedded Linux developmentinequ
long learning time and high experience, and it leadelayed
time-to-market. Embedded system developers wanir the
operating environment to just work so they can tgetvork

2119

right away on developing the actual application.

Tools to automate and assist this development psocan
make developer to save much time and effort. Resentey
showed 69% of the Embedded Linux developers isngilto
pay for development tools.

In particular, the user demands a system wheretie are
closely integrated and have a consistent userfaaiand help
facility.

Target Builder is a toolkit to assist and to auttamall
development process. It shows all configurable omsti of
kernel, applications and target environment in ee.trSo
developers can navigate all those options and ts&n tto
proper values. Target Builder shows on-line help dach
option and check dependencies among them. If depeies
are violated, Target Builder informs the user wtaised the
violation. This dependency checking can dramaticedbuce
errors in configuration stage. It automates alleothrocess;
root file system generation, optimizations and degplent to
the target[3].

REFERENCES

[1] Geert Uytterhoeven, “The Linux Frame Buffer Device
Subsytem,’http://www.cs.kuleuven.ac.be/~geert

[2] James Simmons, “Linux Framebuffer Driver Writing
HOWTO,” http://metalab.unc.edu/LDP.999.

[3] W.C. Kang, H. C. Yun, H. N. Kim, “Target Buildefn
Embedded Linux Development ToolkitProceedings of
the IASTED Software Engineering and Appplicatio®SE
‘02", pp. 163-167, Boston, USA, 2002.

[4] CLE266 Chipset Datasheet, VIA Technologies, ind an
S3 Graphics, inc., 2003.

2120

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2116
	page21: 2117
	page31: 2118
	page41: 2119
	page51: 2120

