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Abstract: Parameter set of an LPV system is divided into a number of subsets so that robust feedback gains may be designed
for each subset of parameters. A concept of quasi-invariant set is introduced, which allows finite steps of delay in reentrance to
the set. A feasible and positively invariant set with respect to a gain-scheduled state feedback control can be easily obtained
from the quasi-invariant set. A receding horizon control strategy can be derived based on this feasible and invariant set.
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1. INTRODUCTION

Receding horizon dual-mode paradigm provides an ef-
fective way to handle control problems in the presence of
physical constraints on actuation[1][2][3] [5][6]. The basic
idea here is to use a finite number, N, of feasible free control
moves to steer a state into a target set that is feasible and
positively invariant with respect to a state feedback gain K.
The feasible and positively invariant set is defined as a set
of states for which a state feedback control u = Kx satisfies
physical constraints for any state of the set and makes it re-
main within the set. In the presence of model uncertainties,
[5] and [8] derived polyhedral and ellipsoidal invariant sets,
respectively, with respect to a feedback gain K. Existence of
such a polyhedral/ellipsoidal invariant set requires that the
feedback gain K robustly stabilize the uncertain system. If
some information on the current system parameters is avail-
able (although their future variation is uncertain), however,
we could assume the use of different gains depending on cur-
rent parameters to yield better performances. In this gain-
scheduled control, we do not need to find a single feedback
gain which can stabilize the whole uncertainty class.
In recent years there has been several works on the gain-
scheduled control of linear parameter-varying(LPV) systems
utilizing invariant sets[9][10][11]. Free control moves are
computed concerning parameter dependent gains but invari-
ant sets are defined with respect to a single feedback gain in
[9] and [10]. In [11], invariant sets are derived with respect
to a gain-scheduled control. These works are considering el-
lipsoidal invariant sets such as {x|x'Px < 1}, where P is
not parameter dependent. As it is known that parameter-
dependent Lyapunov functions yield better stability results
than fixed quadratic Lyapunov functions in robust control
problems[12], use of parameter dependent paper, however,
we seek improvement in a different way considering gain-
scheduled control. Concept of quasi-invariance will be in-
troduced, which postpone the invariance requirement until
some finite future time steps i.e. states may leave the set
but return into the set in finite time steps, and this will re-
lieve the conservativeness of existing invariance conditions.
Unlike the earlier works[9][10][11], polyhedral type invariant
sets will be used in this paper. Once a quasi-invariant set is
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obtained, it is straight forward to extend it to yield a posi-
tively invariant polyhedral set of higher complexity.

2. Introduction of Quasi-Invariance
Consider the following Linear Parameter Varying(LPV)
system:

x(k +1) = A(@)x(k) + B(6)u(k), [u(k)| <, 1)

where 8 is a vector of time-varying parameter and the matrix
functions A(-) and B(-) belong to one of the uncertainty class
depending on the value of 8:

np
Qo = {(Am,ﬁm)mm,ﬁm) = m(Amu Bm,),
=1

Tp
nl2072nl=1}7m=1727"'7Q' (2)
=1

Remark 1 :A polyhedral set Q = {(A, B)|(4,B) = i
m(ALB), m > 0,3 m = 1 can be divided into
subsets Qp(m = 1,2,---,Q), where (Ap, Bp,)s(m =
1,2,---,Q, 1 = 1,2,---,np) are composed of (A, B))(l =
1,2,---,ns) and other elements of Q. There may be infinite
number of choices in dividing Q). As the number of subset
increases, it is likely to yield better performance while the

complexity of control law increases. ]

In the sequel, modulus of a vector/matrix and inequalities
between vectors are defined as:

Imia|  |miz| oo [mal
] Imea|  |mez| - [mapl
Img1| |mgz2| -+ |mg,l
a1 51 a1 < B,
Q2 B2 az < B,
< implies
Qp Bp ap < By

The parameter vector § is uncertain but its current value
can be measured or estimated on-line. Thus at each time
instant, it is possible to identify the uncertainty class to
which (A(6), B(#)) belongs. A reasonable control strat-
egy for this system is to design state feedback gains K,
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(m=1,2,---,Q) which robustly stabilize uncertainty classes
Qm (m=1,2,
according to the parameter variation. We will denote this

, @), respectively and switch feedback gains

control law as:
u(k) = K(0)x(k), (3)

where K(6) can be one of Ky,, m = 1,2,---,Q depending
on the value of . For a given measured state x(k), based
on the measurement of §, one of the control law u(k) =
Knx(k),m=1,2,---,Q shall be used, which requires

|u(k)| = |Kmx(k)| Sﬁ7 m=1727"'7Q' (4)

Provided that (4) is satisfied, use of u(k) = K(8)x(k) would
yield

x(k +1) = 3(0)x(k), ®(0) := AB) +BO)K(®H). (5)

As a first step to tackle the problem of obtaining positively
invariant set for the LPV system (1-2) with respect to the
switching control (3), we make the following definition.

Consider the LPV system described by (1) and
(2). A set F is feasible and quasi-invariant with respect to
the switching feedback controlu(k) = K(0)x(k) of (3) if there
erist a finite positive number niny, such that for any initial
state x(k) € F, the future states x(k+1) (i =1, -, Niny)
of the system (5) satisfy the input constraint (4)(feasible)
and x(k+niny) belongs to F(quasi-invariant) at any possible
variation of 0. u

Definition :

Note that any set of states containing the origin as its inte-
rior point would be quasi-invariant provided that the system
under consideration is asymptotically stable, since states of
stable systems converge to the origin from any initial value.
This fact shows that the quasi-invariance of a set does not
much depend on the shape or complexity of the set. Thus,
we will consider a simple polyhedral set and derive condi-
tions under which the set is feasible and quasi-invariant with
respect to (3).

Counsider a simple polyhedral set of states which contains the
origin:

F= {x|x = Z{T]ixi +pixi-}, My e >0, s =0,

i=1

Z{m+ui}=1}, ()

i=1

where
X; = )\lziz (7)
Xi— 1= —)\iiii, (8)

X > 0 and %, represents the i** canonical unit vector of
R™ space.
directions and we assume that only one of these two vectors

Note that x; and x;_ are vectors of opposite

has nonzero coefficient. The scaling factors A;, 1 =1,2,---,n

can be used to adjust the size of F so that the control law
(3) remain feasible for any initial state in the set.

We assume that the feedback gains Kj, i = 1,2,---,Q are
pre-determined. Qur aim here is to derive sufficient condi-
tions in terms of A;, under which F is feasible and quasi-
invariant with respect to (3). It is required to check whether
the predicted future states x(k—+i|k) (i =1, -, Rino) satisfy
the input constraint (4) and x(k + niny|k) belongs to F for
any initial state x(k) € F. Because of the uncertainties re-
sides in <i>m, however, it is not possible to compute the exact
propagation of states. Instead, upper and lower bounds on
x(k + j|k) can be obtained using the recursive state bound-
ing technique developed in [5]. It is based on the following
obvious lemma.

Lemma :Given o matriz M, let MY := maz(M,0) and
M~ := max(—M,0), then

X<x<X=MTx—MI<Mx<M'T-—M"x, (9)
where the mazimization is applied elementwise. ]
Assume that the current state is given as

x(k) = %5, (10)

then the upper and lower bounds on x(k) can be determined
as:

Ri(k) = & = %(k). (11)

From relations (5) and &, = > 1j®m, , bounds on x(k+
1|k) can be obtained as:

max

— ém,lii
x(k+1k) = m=12.,Q ,  (12)
l=1727"'7np
_ min B 1%
Ki(k+1|k) = m=12---,Q ’ (13)
=12, ,np
where ®,,; = Amn; + Bm, K, and the maximiza-

tion/minimization is applied elementwise. Starting from the
bounds such that %;(k+ 1|k) < x(k+1|k) < %,(k+ 1|k), the

bounds %;(k + j|k) and %;(k+ j|k) for j > 1 can be obtained
recursively as:

%i(k+ 37+ 1|k)

(14)

maz @ Xi(k+ jlk) — @, X (k + j|k)
= m=12-,
l=1727"'7np
%,(k+j +1[b) (13)
B min q’;,;&(k"'ﬂk) —<I>;z,,§i(k + jlk)
- m = 1727"'7 .
l=1727"'7np

Denote the set of bounds generated by relations (10-15) with
initial states x(k) = %; as:

B(%:) == {(Xi(k + jlk), %, (k + j|k)), § = 0,1, +,7ns}, (16)
and consider hypercubes defined by these bounds as

Hi(%:) = {x € R"| %,(k +jlk) < x <Xi(k+4lk) }. (17)
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Since F is convex and the closed-loop dynamics (5) is linear
in terms of x(k), the feasibility and quasi-invariance of F
can be checked by considering propagations of the vertices
of 7, i.e. B(x;) and Hn,,,,(x;) fori =1,2,.-.,n. The quasi-
invariance of F would be guaranteed if Hy,; , (x;) C F. i.e.
every vertices of Hn,,  (x;) belong to F for i =1,2,---,n.
We will denote the p** vertex of Hn,,, (%) as Vi, (&),
Each vertex of H,,,, (X;) could be represented as a lin-
ear combination of canonical unit vectors %X; and %;_(7 =
1,2,---,n) as:

COED W UARE YRS ARE (18)
g=1
where ﬁg’i,ﬁg’i > 0 and ﬁg’i ~ﬁg’i = 0. Note that the co-

efficients %" and 2% can be computed off-line for p =

1,2,---,2" and ¢ = 1,2,--,n, since the bounds X,(k +
Niny|k) and X;(k + Ninv|k) are obtained with a known initial
state X; as (10).

From the linearity of the dynamics (5) and the definitions of
(7-8), we have vk (x;) = }\Livﬁim

both sides of (18), we have:

(%:). Multiplying - on

. ~p,i A ~D.0 A
IMCOEDIC A ke Ay S %o} (19)
g=1

It is easy to see that v, (x;) would belong to F provided
that:

S AT AR = A (20)

a=1

It is clear that every element of the hypercube Ha,,, (x;)
would be included in the set F if and only if all the vertices of
Hn;,, (xi) belong to F. Thus, the quasi-invariance of the set
F would be established if there exist positive ;s satisfying
the relation (20) for p=1,2,---,2" and i =1,2, -, n.

On the other hand, the bounds on Kpnx(k + jlk)(m =
1,2,---,Q), where x(k + j|k) is obtained with initial state
x(k) = =x;(k), also can be obtained using the bounds
(%i(k + j|k), %;(k + j|k)) € B(%;) and their feasibilities are
guaranteed if conditions:

Khx (k+ jlk) — K% (k+ jlk)
K} %(k + jlk) — K%, (k + jk)

=X -u, (21)
PVRETH (22)

are satisfied for m=1,2,---,Q.

Based on the above arguments, conditions for the feasibility
and quasi-invariance of the set F can be summarized as per
the following theorem.

Theorem 1: Consider the LPV system (1-2) with the
switching control (3). Bounds (X,(k + j|k), %:(k + j|k) €
B(x:;)(j = 1,2, -+, niny) are generated according to the re-
cursive relations (10-15) and coefficients 2", fif’¢ of (18) are
obtained for vertices of the hypercube Hy, (%) of (17). If
the positive coefficients A;(¢ = 1,2,---,n) satisfy (20) and
(21-22) for p=1,2,---,2" and ¢ = 1,2, --,n, then the set
F of (6) is feasible and quasi-invariant with respect to the
switching control (3). n

Note that the relations (20) and (21-22) are linear in terms
of \i(i =1,2,---,n). We can formulate an LP problem to
obtain a set of coefficients satisfying these relations. One
possible choice of a cost index for the LP problem would be
sum of \;s, minimizing this sum will increase the size of F.

3. Use of Transformed States

The bounds developed according to relations (10-15),
however, are likely to be overly conservative because of two
reasons. The first source of conservativeness is the fact that
a single set of bounds is obtained considering all the possible
variation of dynamics at each future time steps. A remedy
for this would be the use of different sets of bounds for dif-
ferent possible trajectories of future system changes. For a
given current state x(k), we can obtain @ different sets of
bounds on x(k + 1|k) considering the possible uncertainty
sets O, m =1,2,.--,Q. Based on the @ different sets of
bounds on x(k+1|k), one possible way to proceed to the next
time step k+2 would be generating @ different sets of bounds
for each set of previous bounds on x(k + 1|k) i.e. generate
Q? sets of bounds on x(k + 2|k). Following this strategy, we
would have Q7 sets of bounds on the state x(k + j|k).

The second reason of conservativeness is that the bounds
generated by the relations (12-15) might not be shrink-
ing even if all the dynamics ®,,;(m = 1,2,---,Q, | =
1,2,---,np) are stable. This conservativeness can be relieved
by introducing state transformations z* := W;x so that the
bounds on the transformed states can be made shrinking [5]
i.e. z'(k+ jlk) < z'(k +j + 1|k) and Z(k + j + 1]k) <
z' (k + j|k).

Consider @ different state transformation Wpx,(m =
1,2,---,Q), where W, represents the transformation ma-
trix corresponding to a state feedback gain K,,. Using these
transformed states, relations (10) and (12-13) can be rewrit-

ten as:
z" (k) = W%, (23)
and
=m maxr dVmW, %,
a'k+1k) = _ ., ™ (24)
— » Hep
m min W, %;
g+l = _ 0T T , (25)
— » Hep

where and @n”:’;” = Wi(Am, + Bn KW', Based on
the Q different sets of upper and lower bounds z; (k +
k), "k + 1k) (m = 1,2,---,Q), we will generate Q>
different sets of bounds Zn(k + 2[k), 27 (k + 2|k)(h =
1,2,--,0%,.

A set of states between the bounds z™(k + j|k) and Z " (k +
j|k) can be defined as:

Hy(im, %) = {2 € BME"(k + k) <z ST (k+jlK) } (26)

then @'*! different set of bounds based on @’ different set
of bounds can be obtained as:
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7' (k+ 7+ 1]k)

maz VW, WL vE(ih, %;
= 1=1,2,-,np (g ”( )(27)
p=1727"'72n
27 (k + 7+ 1]k)
min SWm W WL vP(ih, %;
= 1=12-,n (g “( )(28)
p=1727"'72n
form=1,2,---,Q,m=1,2,-,Q andh := (?h—1)Q+m.

As it was done for non-transformed case, each vertex of
Hn;,, (T, %;) can be represented as a linear combination of
transformed canonical unit vectors:

Vﬁim (h, xi) = (29)
yi,h Dy, )‘q
Z{nq 3 Ve Xa T T 5y 3 Very%e-h
where 72°4™ "™ > 0 and 7, - i, = 0.

It is easy to see that F of (6) can be rewritten in terms of
transformed states as:

F= {X|me = Z{mexz- + uiWaxi—}, mi,ps 20,

g=1

Nipi = O,Z{m +pi} < 1} . (30)

i=1

From (29) and (30), the scaled vertex v, (m,x;) belongs
to F if

n p=1,2,-..,2"
D AT AT < A i=1,2,-,n (31)
g=1 =12, Q"

is satisfied.

Additional conditions which guarantee the feasibility of state
feedback controls during time steps & to k + nin, — 1 can be
obtained in terms of the transformed states as:

K o B 31R) = Ko 70 (4 31R) 2 =X -0, (32)
K o o+ 3lk) = K, B+ k) < i - 6, (38)
TR TR

for j=0,1, ,nny—1, m=12-,Q ,where K} :=
maz(Kp Wml,O) and K, := maz(—KxW;',0)

From the definitions (7-8), we can see that minimizing \;s
would yield x;s of maximum length and in turn the size of
F would be maximized. Based on this observation, it is
possible to formulate an LP problem obtaining optimal A;s
which guarantee the quasi-invariance of F:

XA - Al = Limh (3

subject to (31) and (32-33).

4. Positively Invariant Sets
Assume that the set F of (6) is quasi-invariant
and the corresponding hypercubes H;(w,%;) (j =
1,2, Bipy, m=1,2,-, @, i=1,2,--,n) of (22) and
positive coefficients A;(i = 1,2,---,n) of (34) are obtained,
then we have:

. 1. . .
Hi(,x;) = 3 M (h, %) (35)
vE(in,x;) = )\iivf(fn,fci). (36)

Note that state feedback laws u = Kp,x(m = 1,2,---,Q)
are feasible for any x € H;(/h,x;) and x € F. From this
fact and the feasibility /quasi-invariance of F, it is possible
to establish a feasible and positively invariant convex hull,
composed of H;(, x;) and F, as per the following theorem.
Theorem 2: Consider the LPV system (1-2) with the
Bounds (Z; (k + jlk), Z™ (k + j|k))
are generated according to the recursive relatlons (24-28)
and the hypercubes H;(h,x;) (j = 1,2, -+, N4py, M =
1,2,---,Q%, i=1,2,---,n) and their vertices vi(m,xi)(p =
1,2,---,2™) are obtained as (35-36).
efficients A\;(1 = 1,2,
@k + 1K), 2
hull defined as:

switching control (3).

If the positive co-
-+,n) satisfy (31) and the bounds
™ (k + j|k)) satisfy (32-33), then the convex

C:= {x|x = i[nixi + pixi—] 37)
n nznv_IZ:Qlj 2m
+ Z Z Z Z[CJ m,PxJ,m,p + €] m,pxj,_rh,p],
i=1 j=1 m=1p=1
np ine—1 Q7 27

Z[m+uz]+z S S S g =1,

j=1 7h=1p=1

My iy P EP™P > 0}
is feasible and positively invariant with respect to the
switching control (3), where x"™" := W1

("‘) Vi
X = W

vP(m, x;) and

P, xi-).

The maximum number of vertices of C is 2n + 2(n X (Niny —

1) x Q] X 2™) considering x;, x;_ ,x]’m’p and x{’_ﬁ”’ for i =
1,2,--,m, § = 1,2, gy — 1, 0 = 1,2,---, Q) p =
1,2,---,2™. Some of these points, however, might be located
inside of € and the actual number of vertices of C would be
less than the maximum number of vertices. If the number of
actual vertices is nyer and we denote the actual vertices of C

as x¢ (¢ =1,2, -+, Nyer), then C can be rewritten as:

€= {x € R"[x = ) [nix? + pixi],
i=1
S +ul=1, wg,pu =01 (39)
i=1
Asymptotic stability of the switching control system can be
checked by considering the vertices of C° as per the following
corollary.
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Corollary 2.1 : Consider the convex set C° of (38) and
the switching control (3) for the LPV system (1-2). If there
exist a positive scalar p(< 1) such that

®p,ix; € C%(p), (39)
for m=1,2,-.-,Q,1=12.--- ,npi=1,2,- -, Nyer,
then the resulting closed-loop system (5) is asymptotically

stable, where C°(p) = {x € R"|x = " p[p?x¢ +

pex2_], e g +pel =1, ng,p >0} ]

5. Numeric Example
Consider a LPV system (1) whose matrix functions A(4)
and B(6) belong to one of the uncertainty classes of (2),
where Q@ =2, np, =2, u=5 and
6.5622 7.0874 A, = 6.9764 7.5272
7.0874 7.7298 |’ 7T | 75272 8.1922 |’
By = [1.2225 1.1715]', Bis = [1.2723 1.2260]'

12.0896 12.9275 [ 12.8495 13.7271
12.9275 13.8643 |’ 2 7 | 13.7271 14.7032 |’

By = [1.8498 1.8485]', Bas = [1.9312 1.9354] .

All =

A21=[

Stabilizing feedback gains for the uncertainty sets 2; and
Q2 are obtained as Ki = [5.7419 6.2291] and K. =
[6.8183 7.2982], respectively, by solving the LQR. problems
for the center of gravities of each of the uncertainty sets. It
is easy to see that use of K1 or K> alone can not stabilize
both of the uncertainty sets. The transformations matrices
are selected as:

W — | —184767 —18.5853
YT Z17.7541 —19.2768 |
—33.4799 —34.3830
Wa = .
—32.7561 —35.0731

The LP problem (34) searching for the weights X\;(¢ =
1,2,---,n) becomes feasible with n;,, = 3 and its solu-
tion is A1 = 1.3637, A2 = 1.4596.
feasible/invariant set is shown in Fig.1 along with propa-

The resulting quasi-

gation of the initial state z» = [0 1]'. We can see that the
predicted state may go out of the quasi-feasible/invariant
set but come into the set in 3 time steps. A feasible and in-
variant set is obtained considering the vertices of upper and
lower bounds for the prediction horizon [t + 1,t + 2] as was
shown in Fig.2.

6. Conclusions

The quasi-invariance requires that the closed-loop prop-
agations of states of a set come into itself again in a finite
number of steps while positive invariance requires that all
the future propagations should belong to the set. In this
sense, quasi-invariance is a more general concept than the
positive invariance and it can be obtained through LP for
uncertain switching systems. A positively invariant set can
be obtained from a quasi-invariant set by considering the
propagations of the vertices of the quasi-invariant set and
the positive invariant set could have much more corners than
the quasi-invariant set.
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Fig. 1. Quasi-Invariant set and the vertices of possible prop-
agation of the states with initial state £2 = [0 1]', "*’ time
step k + 1, '0’ time step k + 2, ’.” time step k£ + 3

2L 4

-3 L L L L L
-3 -2 -1 0 1 2 3

Fig. 2. Feasible and Invariant set
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