FPGA real-time calculator to determine the position of an emitter

  • Tamura, M. (The Faculty of Engineering, Miyazaki University) ;
  • Aoyama, T. (The Faculty of Engineering, Miyazaki University)
  • Published : 2003.10.22

Abstract

To detect motions of bodies, we have discussed them with two viewpoints; one is a detection algorithm, and another is the hardware implementation. The former is to find small terms expansions for sine/cosine functions. We researched Maclaurin and optimum expansions, and moreover to reduce hardware amounts, revised the expansions. The expansions don't include divide calculations, and the error is within 0.01%. As for the former problem, there is another approach also; that is the cordic method. The method is based on the rotation of a vector on the complex plain. It is simple iterations and don't require large logic. We examined the precision and convergence of the method on C-simulations, and implemented on HDL. The later problem is to make FPGA within small gates. We considered approaches to eliminate a divider and to reduce the bit number of arithmetic. We researched Newton-Raphson's method to get reciprocal numbers. The higher-order expression shows rapid convergence and doesn't be affected by the initial guess. It is an excellent algorithm. Using them, we wish to design a detector, and are developing it on a FPGA.

Keywords