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Abstract

This paper deals with the problem of predicting order statistics in samples from a
Rayleigh population when an outlier is present. Bayesian predictive distribution and
prediction bounds of the p— th order statistics is obtained where an outlier of type

86 is present. In this connection, some identies are derived.

1. Introduction

The Rayleigh distribution with probability density function(pdf), denoted by R(d?),
is given by

Ax; o) = —fz—exp(—z'%), 0<{x< oo 1.1)
and distribution function is
2
Flx: 0 = l—exp(——szz), >0, 0< x¢ oo (1.2)

The properties and application of Rayleigh distribution were discussed by
Siddiqui(1962), Dyer and Whisenand (1973a,b), Sinha and Howlader(1983) obtained the
Bayes estimator and credible intervals for the reliability function.

In this paper, few concepts like order statistics, prediction and outliers are dealt
with. Kitagawa uses Bayes approach to analyse when outliers are present. Barnett
and Lewis is a text devoted entirely to outliers. Regarding Bayesian prediction,
Chhikara and Guttman(1982), Nigam and Hamdy(1987), Sinha(1989), Upadhyay and
Pandey(1989) and Nigm and AL-Wahab(1996) suggested the Bayesian inference about
prediction for inverse Gaussian, Pareto, lognormal, exponential and Burr distributions,
respectively.

In this paper, a different situation is taken up. That is, in the samples now, outliers
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are present. Predictive distribution of the p—th order statistics a sample from a
Rayleigh population is obtained when an outlier of type 66 is present. In this
connection, some identies are derived.

2. Prediction of the Future Observations in the presence of
Outlier for type 60

Suppose that X, X5,, X is a random sample of size m drawn from a

population whose pdf is Rayleigh distribution and that Y;, Y2,*, Y, is a second
independent random sample of future observations from the same distribution.
The distribution of the p— th order statistics in the a sample of size »# when an
outlier is present is given by (y = y4))
) =a [(=D{FM? 2 {1— FON"? GIA +{F)P 11— FO))"? gy)
+(n—p) (FON' {1— FON 71 {1- G 3} f (W] 2.1)

_{n—1
where a—( y— 1) and Ax)=f and F(x)=F are the density and distribution
function of all those x’s which are not outliers while g(x) and G(x) are those of an

outlier. If the outliers is of type @0, then from (1.1) and (1.2), we have

gxro=—%5 ¢ oo
(08)? (2.2)
and
__f_z
Gix:o)=1—e %9 23)

and if the p— th order statistics is ¥ = ¥(p), then we have (2.1) as
' Iy S P—2 1 Vi —tametitny  _{a-prirnenly
fsto) = d] 2 (=1 T (272 )(—1 == )

—e

rd —_ .' —\{n— 1
+_L E(Djl) (—1Y e L zz:a;fzﬂ}vz

+—0¥2— (n—p)pgo(i’;l) (~1)"e“_‘L"';”§2ﬁ§lm’£] (2.4)

For the first .»— th ordered failure times from the first sample of size m obtained
from the Rayleigh population, the likelihood function is given, using (1.1) and (1.2), by
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gx%"—(m_ r)xz(r)

Lelx) & 7,217 exp|— 202 » o0, 0<x <0, i=1,2, + - - ,m.
25)

To obtain the posterior density of g, we use a prior density which is given by

1
(o) o 26)
It follows, from (2.5) and (26), that the posterior density is given by
2 '_2%
_ 2 e

H( 6'.& )_ nr) 2r—l 02r+l (27)

7
2 __ 2 _ 2
where ? —5‘_,‘ xf+(m—nx(,

Following Aitcheson and Dunsmore (1975), the Bayesian predictive density function
of y given x, denoted by A3x), is defined by

fy1z)=[" Avle) I o1z ) do

r 2 -2 j

= 2azry [(p—l) Z, (pj )(_1) [{(r—p+i+Dy?+23771)

— 8D {(m—p+i+1)%+1}2 + 822 ]V ] (2.8)
’=1

r -1 ;
+ ;ZO (p] ) (=1 H{(n—p+)%+1}y2+ 6% 22 ]—(r+1)

r = -1 i
+ 09 02V E (P2 )0 [ pr a4 2]

The prediction bounds for y are obtained by evaluating P (Y > ¢]x ) for some
positive [ It follows from (2.8) that

— r L "2 j
Y24y =% =1 ,§o(”j )(‘1’ (n—p+7+1) " {(n—p+j+ D2 +22 "
- T r+1) AP p—2 . '
az" (p=1)8% H),Z:o( j )(—1)’{(n—1>+j+1)62+1}”1
<[{(n—p+j+1) 0+ 1} +8222] "
p=1

r r —'1 j
+az" 7 & Z(”,- )1 {(n—p+7e2+1)""

0
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x[{(n—p+)*+1}£+6%2%]77

r _ r S P—l .
+az” (n=p)5* H)‘;o( i )(—1)’{(n—1>'+j—1)62+1}‘l
x[{(n—p+ij—1)%*+1}£2+6%2%]1"7 (29)

A 1007% Bayesian prediction interval for ¥ is such that

AL YCUX)] = =, (2.10)
where L(x) and U(x) are the lower and upper limits satisfying

AY> Lzl = (1+9/2

and

AY) Uzl = (1+9/2.

Also from (2.8), one has

al' (r—-5) (<5 +12° 122 p—2 )
E(Y)= %"(r) : [(p—l),go( j )(_1)

A nmptitD) 27 = (n=ptj+DE+1) et }

S

=l _'1 j Qs —-s
+,z=:o(pj J- e ({ (n—p+pa2+1} °
=) {n—pti—D&+1 2 8] 2.11)

As another prior distribution for ¢, we consider an inverse gamma prior distribution

with the probability density function

1
28 &

e
I'(a) g2 etV a, B> 0, 0> 0. (2.12)

II (0)=

Then one can obtain easily the posterior density of ¢ given X = x, which is given
by '

(_&_2-_’3“'_2)”‘”'% _A2+2
_ 8 e 28 & _
I(olx) = 1 5
P(r+a+7) 2’*"‘2 Rlrtath (2.13)

Under the conditional predictive density and inverse gamma prior, the Bayesian
prediction density function of y given x is
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r+a+d = _ .
I ylx)=2elrtat 58 E242 " [wo-'F (772) -1y

(r+a+%) Z(r+a+‘3‘)

{(n—p+i+1) B +(82+2)} =) PHn—p+5+1) 8

(rtasd = p—1 I 2(r+a+'%‘)
IPERP RIS e U R j ) -v'e

—{r+ea 4
X[{(n—b+i)32+1}/3y2+82(Bzz+2)]( Y

o S PN _yyi
+o-p g (27 Y- 18

—(r+a+'g') ]

2(r+a+‘3)

" U p+i—1) @+ 1)87

+ 8%(B2*+2)] (2.14)

Using (2.14), one can obtain the probability

+a+ 52 —1)
P(Y=tlx)=a(g2+2) 7 [(” 1),5;:0(1),' )( D

(r+a+—2L)

{(n—p+j+1) " H(n—p+j+1) B2 +(B2+2)}

2Ar+at+a)

—{(n—p+i+1*+1)} "1 2 [{(m—p+;+1)F+1)p2

—(r+a+‘%)} +62(r+a+'%) ﬁil(p_l)(_l)]
=0 7

+ 8%(B2+2)]

—(r+a+1)

{(n=p+ D02 +1} 7! [{(n=p+ D2 +1}BE + 52(82+9)] 2

2Ar+a+2)

S p—1 j
+4 2 (n—1) JZIO(I’]- )(‘1) {(rn—p+;j—D&E+1}7!

-(r+a+‘%)

x[{(n—p+i—1)2+1}8F + 6%(82 +2)] (2.15)

Also from (2.14), one can
al(r+a—-5+2)(5+1)
— = p=2( o )
Norattrpt 62402 [0-0 (772 )1y
_1}

S p—1 Y, 1viss -5 -
+;Zo( 7 )( 1)8{{(n—15+f)52+1} 2 l‘f‘(n“P)as

E(Y?)=

1)

x {tr=p+i+1) T Z 5 (nm pt g+ DA}
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><{(n—p+j—1)62+1}*%—1}] (2.16)
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