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Abstract

In this paper, we develop noninformative priors for two parameter Pareto distribu-
tion. Specially, we derive Jeffrey’s prior, probability matching prior and reference prior
for the parameter of interest.

In our case, the probability matching prior is only a first order and there does not
exist a second order matching prior. Some simulation reveals that the matching prior
performs better to achieve the coverage probability. And a real example will be given.

1 INTRODUCTION

The Pareto distribution has found applications in modelling problems involving dis-
tributions of income when incomes exceed a certain limit.Many socio-economic and
other naturally occurring quantities are distributed according to certain statistical dis-
tributions with very long right tails. Examples of some of these empirical phenomena
are distributions of city population sizes, occurrence of natural resources, stock price
fluctuations, size of firms, personal incomes, and error clustering in communication
circuits. :

Many distributions have been developed in an attempt to explain these empirical
data, The Pareto and lognormal distributions have played a major part in these in-
vestigations. It has been observed that while the fit of the Pareto curve may be rather
good at the extremities of the income range, the fit over the whole range is often rather
poor. On the other hand, the lognormal distribution fits well over a larger part of the
income range but diverges markedly at the extremities.

For economists concerned with upper tails of distributions, the Pareto distribution
is probably more useful than the lognormal which generally gives poor fit in the tails.

The Pareto distribution has reverse J shaped and positively skewed with a de-
creasing hazard rate. Although the family was originally applied to analyzing certain
socio-economic and nature phenomena with observations in long tails, the family has
potential for modelling reliability and life time data as well (Arnold, 1983).

A number of authors have studied Bayesian inference procedures for this distri-
bution, e.g., Arnold and Press (1983,1989a,1989b), Geisser (1984,1985), Lwin (1972),
Nigam and Hamdy (1987), Tiwari, Yang and Zalkikar (1996).

Arnold and Press (1989b) studied the Bayesian estimation problem using the inde-
pendent conjugate prior and modified Lwin prior. Recently, Soliman (2001) studied the
Bayesian estimation of Pareto distribution with scale and shape parameters in various
situations. He considered squarred error loss and LINEX loss for estimating parameters
using subjective priors such as conjugate prior and Gamma-exponential priors.

But there is a situation that one forces to use noninformative priors such as Jeffrey’s,
reference or matching priors because the prior information for the distribution is rare.

There has been an amount of efforts for finding a noninformative or objective priors
under certain statistical models. Jeffrey's prior was quite successful in many Bayesian
inference, but it causes problems when the nuisance parameters are present.
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Recently, much effort has been done for finding reference or probability matching
prior. These noninformative priors work well in many statistical problems when the
nuisance parameters are present.

Berger and Bernado (1989,1992) extended Bernardo’s (1979) reference prior ap-
proach, giving a general algorithm to derive a reference prior by splitting the parame-
ters into several groups according to their order of inferential importance. On the other
hand, Welch and Peers (1963), Peers(1965) and Stein (1985) found a prior which meet
the frequentist coverage probability of the posterior region of a real-valued parametric
function to match the nominal level with a reminder of o(n_é ), where n is the sample
size. Tibshirani (1989) reconsidered the case when the real valued parameter of interest
is orthogonal (in the sense of Cox and Reid (1987)) to the nuisance parameter vector.
These priors, as usually referred to as 'first order ’ matching priors, were further stud-
ied in Datta and Ghosh (1995a, 1995b, 1996). Recently, Mukerjee and Ghosh(1997)
developed a ’second order’ , that is o(n™!), matching prior. They extended the ré-
sult in Mukerjee and Dey (1993) to the case of multiple nuisance parameters based
on quantiles, and also developed a second order matching prior based on distribution
function.

In this paper, we derive the Jeffreys’, reference and matching priors for the two
parameters Pareto distribution. We show that when the parameter of interest is the
model parameter itself, there does not exist a second order matching priors. Posterior
propriety under the proposed noninformative priors will be given. And also, some
examples are given including coverage probabilities using artificial data.

2 NONINFORMATIVE PRIORS FOR PARETO DISTRI-

BUTION

The Pareto distribution with shape parameter a and scale parameter 3 is given by
f(@ia,8) = (2 +B)"), 2> 0;(a > 0,8 > 0). )

Soliman (2001) considered Bayes estimators of parameters, reliability, and failure rate
functions for the above density (4).

Including Jeffrey’s prior, we will find the probability matching prior and reference
prior when the parameter of interest is a or 8.

Let I(a, 3) be the information matrix of o and 3 per observation. Then

1

I(a,ﬂ>=( 2 TR ) @

a
TBletD)  FFa+?),

Suppose that we are interested in estimating the parameter . Then a is the param-
eter of interest and § is the nuisance parameter. Consider the following reparametriza-
tion, which give the orthogonality of parameters in the sense of Cox and Reid (1987).

Let
1+a
w1 = a, W2 =/3—-—2—.
o

Then the information matrix for (w1, w2) per an observation is given by

1

14wy )2w? 0

I(wlam) = ( ( ' ! wy - (3)
0 (w1+2)ws

From the above information matrix, one can find the various noninformative priors
when the parameter of interest is a, as follows.
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The Jeffrey’s prior was{w:,w2) is given by

1 .
rr(wi,w2) o - ,wi, w2 > 0. 4)
(1, 2) we(l+wn)y/wi(2 +wn) ! (

The class of first order matching prior is given by

g(w2),w1,w2 >0, (5)

Tt (W, w2) X — e —
ML (1 +wr)

where g(-) is arbitrary differentiable function in its argument.
Finally, the reference prior is given by

Tr(wr,ws2) ywi,wz > 0. (6)

1+ w)wrwe

REMARK 1. One can easily find the fact that the reference prior satisfies the first
order matching criterion.

The class of prior given in (6) is quite large, and it is necessary to narrow down this
class of priors. To this end, we consider the class of second order probability matching
priors as given in Murkerjee and Ghosh (1997). A second probability matching prior is
a prior which satisfies the following equation. When the parameter of interest, w, is
orthogonal to the nuisance parameter wy, a second order matching prior satisfies

1 d (32 N\, d (12, .= _
gy(wz) e ('11 Ll,l,l) + (iu Lzt y(wz)) =0, (7

where L is a likelihood function of (w1, w2), i*® is the a-th row and b-th column element
of inverse of information matrix I(w:,ws),

3
Ll.l,l = E [(a;)g[/) ] ,
Wi

and o
log L
Lyz = -
uz=F [ o2 an
From the pdf (1), the likelihood function of (w;, w;) is given by
L(w1,ws2) = logw; + w1 logwz + 2w logwy — wy log(1 + wy) — (w1 + 1) log(x + {’—i“%-)
1

And from the above likelihood function. one can get

2(3 + 5w1)
w1+ w1)3(w1 + 3)°

Ligy=-—

and
9

wiwa (1 + W1)(; +w1)(@3+w)

Lua =

2
Using the fact that 122 = E’L:%)“’-Z, the equation (8) reduces to

2 1 d
o3 + ;;E'(wzg(wz)) =0.

g(w2)

There does not exist a function g(w2) which satisfies the above differential equation.
So, there does not exist a second order matching prior when the parameter of interest
is a.
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The priors (5),(6) and (7) can be re-expressed as original parameters a and 3: For
a,B>0,

: . 1
e EWAW v e
o)

7r(a,f) « B_—a(ll+a)'

Now, we will prove the propriety of posterior distribution under the Jeffrey’s, ref-
erence and matching priors when the parameter of interest is a.

Theorem 1.Under the prior mam(a, 3), the joint posterior distribution of (a, 8) is
proper if n — 2 > 0.
Proof. The joint posterior distribution of mas(a, 3|x) is proportional to

(e, Blx) o< o™ ~° 4" [ wi + B) O+,
i=1
Let y be the minimum of z1,z2, - ,z». Then

[T [ a5 e+ 7 daas

i=1

A

L[ et 7 Vdads

—n 1 n-3 l"(na + 1)
P(n - 1)/ na+n)da

Il

And the integrand of the last term is bounded by

nal(na+1) a™?
Plna+n) =~ (na+n—-D{na+n—-2)-- - (na+1)
an—3
(na + 1)n-1"

Now, the integral

oo n—3
/(; -(n—aa:ﬁ_:fda = n_("_2)Beta(n -2,1),

where Beta(n - 2,1) = E%?_)%ﬂ is finite if n — 2 > 0. This completes the proof.

Theorem 2.Under the prior 7s(a, 8), the joint posterior distribution of (c, 8) is
proper.
Proof. The joint posterior distribution is proportional to

ma(e, Bx) o V(1 4 @) 2+ @) TABm T [] (@i + B)TEHY.
i=1
Let y be the minimum of z1,z2, -+ ,Zn. Then
/ / 75(a, Bix)dadf / / Q™ V21 + a) (2 + a)V/?
o Jo o Jo :
xﬂna—l(y + B)_"(°+l)dadﬁ

= y”"/ o1 4+0) 2+ @)
0

IA

1/2(no)l'(n)
I'(na + n)
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Now, consider the integration for o.

= a™’I(ma) L[
,/0 1+ a)(2+ a)/2C(na+n) T Jo (ma+n—-1)(na+n-2)---na

IA

oo an—1/2
L arae e
1

e 1
n /o lraverae

nm
This completes the proof.
Theorem 3.Under the prior mr(a, 3), the joint posterior distribution of («a, 3) is

proper if n > 2.
Proof. The joint posterior distribution of (@, 3) under reference prior is given by

n

n—1 a—1
WR(ayﬂIX) x a_iTﬂn&_ H(z" +ﬂ)—(a+l).

i=1
Let y be the minimum of z1,z2,-* ,zn. Then
n
[+ 8"V < (g + gy 4.
i=1

Note that,

o poo an—lﬁna—l(y +ﬁ)—n(a+1) ) _ a ® qn? I'(na)l'(n)
,/0 /‘; 1+ a dadp _/:, (1+a)1"(na+n)da

oo an—-2
v "T(n) /0 Tram
. 1
(na+n—-1)(na+n—2)---(na+1)

y—ﬂr(n) oo an—2
< n /; 1+ a)(ra+ 1)1 da.

Since 5= < 1, the integration in the last inequality reduced to

da

oo n—3
A -(-T—u—!a:—lel—da = 'n_("—z)Beta(n -2,1).

And Beta{n — 2,1) is finite if n > 2. This completes the proof.

When the parameter of interest is 8, we derive the probability matching prior, and
reference prior. In this case, we know that Jefferey’s prior is the same as the case when
the parameter of interest is a.

From the information matrix for (e, 8) given in (3), following Peers (1965), the
first order matching prior - for 3 is the solution of the following partial differential
equation.

ad 8 +1 +2
%03/2\/0 + 27 + 55.@(_‘1_\/2&‘_/_‘1___“ =0. )]

A solution of the above partial differential equation is given by

1
ﬂ'm(a,ﬂ)O( Wé,u>0,ﬁ>0. (9)
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This is the first order matching prior when the parameter of interest is 3.

Now, we will check that whether the above first order matching prior is the second
order matching prior or not. Let @; be the parameter of interest and #; be a nuisance

parameter. Let
v [ 620 au (10)
a1 ap2

be the Fisher information matrix for (6,, 62).

When 6, is not orthogonal to 8;, Murkerjee and Dey (1993) show that the sec-
ond order matching prior for 81(= ) satisfies the above differential equation (9) and
additional following equation:

4
T(7;61,62) = Y Li(m;01,6,) =0,

i=1

where
1 —1 . X 1y —2
Li(m;61,62) = S{D{B' 2D} Di(anag; B™") + Dj(atiag; B™)},
. _ Dir - 2aua521D1 Dorw + aha;.}D%w
L2(7|’, 01’ 02) = onB y
Lo(ritu, b = D20t (Ko~ Do oo 4 ohro Kool
Lf. _nl ~1 (.
L4(7I'; 01,02) __Dld,(“v 01) 02) D21fa'lla02 1/}(7(', 017 02)}

Here Df = 9% /96%, o
Ki; = E{D{Djlogp(X;61,62)},

D(m;61,8,) = (K30 — 3anag, K21 + 3atia5; Kiz — a}ia5} Kos)n

682
_ Dim - aiiag, Din
=g,
and B = ay ~ a?, /aos.
After some calculation, we get
Li(m; B,@) = 10a* +16a+2/a+1,
i 120" + 480° + 670” + 36a + 8
La(miBre) = - 2a2 + 4a !
. _ a+1
L3(7|', ﬂv a) - m,
and 2
La(mi o) = 2(20° + 18a* + 55a° + 630 + 11a — 13)
am;E= (@+2)(a+3) :
Hence 3 4 1902 9
T(7r;01,02)=5a + 120+ — £0.

2(a + 2)(a + 3)2
This means that the probability matching prior 7m(a, 3) is not a second order matching
prior but a first order matching prior.

Berger and Bernardo (1989) gave an algorithm for deriving a reference prior for
problems with nuisance parameters. We will derive the reference prior when 3 is of
interest.
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From the information matrix, one can obtain the reference prior for o with given 8
as follows:

(a)B) = é

Choose a sequence of compact sets for (8, &) by (L:, l2:) X (k1s, ki), so that ly;, k1i —
0 and Iy, k2; — 00 as i — oo. Let I4 be the indicator of a set A. The conditional prior
of a given Bis

2ok _ Ik (@)
S lda  oflog(kai) — log(ku)}’

ni(afB) =

and the marginal reference prior for 3 is
1 ki q a 1
i(B) = ~1 ———— jda} X —.
(@) e""{znog(kza —logE)] Ji,, @ % ((a + 1P+ 2)) } B
Following Berger and Bernardo {1989), the reference prior for {3, a} is

(B, @) = im ——L s =

i—00 m(ﬂo)m(aolﬂo) af

Here (a0, Bo) = (1,1).

Now, we will show that the first order matching prior given in (10) gives a proper
posterior distribution but the reference prior given in (12) does not.

Theorem 4 Under the prior 7m(a, 8), the joint posterior distribution of (a, 3) is
proper if n — — >0.

Proof. Under the prior wm (e, B), the joint posterior distribution of a and 8 is given
by

wm{a, Bx) o a"“aﬂ""‘ Ha+2)"2 I'[(:,i + ﬂ)*(aﬂ)_

t=1

So the integral with respect to & and 3 is

/ / “\/t_i%’_‘z - f[(zﬁ'ﬂ)“(aﬂ)dadﬂ < / / ":/___f: ! (‘y+ﬂ)—n(a+l)d&dﬂ,

where y is the minimum of z),z2,---,z,.. The integral of the righthand side of the
above inequality with respect to 3 results in

a2 an-—.‘!/z
P(n / da
v o vat+2(na+n—1)na+n-2)---(na+1)(na)
The above quantity is less than or equal to

nP(n) a®™ 5/2
[ e

since 7(%5 < 1. Now the integral with respect to a gives
- - 31
nF 1/2 nB ¢ _2 2

y "I(n)n eta(n 3 2),

which is finite if n > 3. This completes the proof.

Theorem 5.Under the reference prior «.(a, ), the joint posterior is improper.
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Table 1: Coverage Probabilities of Priors for «
n k(9.7 Ty TR
10 | .0318000 1.0000000 } .0000000 .9708000 | .0000000 .9558000
20 | .0442000 .9905000 | .0332000 .9615000 | .0144000 .9469000
30 { .0500000 .9673000 | .0531000 .9555000 | .0364000 .9450000
40 | .0447000 9558000 | .0634000 .9597000 | .0452000 .9494000
50 | .0459000 .9517000 | .0644000 - .9597000 | .0492000 .9506000

Proof.The joint posterior distribution under the reference prior is proportional to

(0 ) oc ™67 [ e+ B0

i=l-

Now, let z be the maximum of z1,z2,--- ,Zn. Then
1 1 (a+1) a™ lﬂno 1
n— no —la >
/ / ‘I—__Il(z + ﬂ) dad,B = / / (z +ﬂ)n(a+l) dadﬁ
- F(n) o0 n—2 o, n—1 3
= a H (na+j) da

j=1
> ———F(Z)/ a" %(na+n)" " Vdaq,
nz" J,

and,

I(n)

n— o y—(n— T'(n n—2 _
pog a" Hna+n) " Vda = n(z) k21 = k) dk = o0.

So. the joint posterior distribution under reference prior is improper.

3 SIMULATIONS AND EXAMPLES

In this section, we will compare the coverage probability of the proposed noninformative
priors. Using the proposed noninformative priors, we will analyze the real data.

When the parameter of interest is «, the coverage probabilities of the priors are
given in Table 1.

In Table 1., under the moderate sample size, one can see that 7ar and 7r match
the target coverage probability well. But the Jeffrey’s prior 7; does not. Specially, the
coverage probability of the reference prior is better than other priors. This is because
nr satisfies the first order matching criterion.

In Table 2., when the parameter of interest is 3, the coverage probability of matching
prior 7,, matches the target coverage well. But the Jeffrey’s prior does not match the
target coverage.

Example. We will illustrate Bayesian analysis using proposed noninformative pri-
ors. The data given below are annual wage data. Dyer (1981) and Arnord and Press
(1989b) analyzed these data. Specially, Arnord and Press (1989b) used Bayesian set
up for analyzing the data. Annual wage data (in multiples of 100 U.S. dollars) of a
random sample 30 production-line workers in a large industrial firm were as follows:

112 154 119 108 112 156 123 103 115 107 125 119 128
132 107 151 103 104 116 140 108 105 158 104 119 111
101 157 112 115

The Bayes estimators of a and 3 under the proposed priors are as follows:
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Table 2: Coverage Probabilities of Priors for 8
n Tm my

10 | .0025000 .9524000 | .0105000 .9751000
20 | .0209000 .9486000 | .0415000 .9651000
30 | .0348000 .9463000 | .0585000 .9613000
40 | .0456000 .9480000 | .0679000 .9612000
50 | .0499000 .9486000 | .0672000 .9605000

a B

75 | 4741 526.731
map | 4461  518.253
nr | 4671 520.897
mm | 4655 519.574

Arnord and Press (1989b) gave the estimates of a using the conjugate independent
priors and modified Lwin priors as 4.263 and 4.225, respectively. Our noninformaive
Bayesian analysis gives larger values than those of Arnord and Press (1989b).

The marginal posterior probability densities of a and 3 are depicted in Figure 1
and Figure 2, respectively.

In Figure 1, we can see that the posterior mode of Jeffrey’s prior is slightly larger
than the the posterior mode under the other priors.

4 CONCLUDING REMARKS

We developed the noninformative priors for the Pareto distribution with scale and
shape parameters.

When the parameter of interest is the shape parameter, Jeffrey’s, reference and
probability matching priors are developed. We showed that the reference prior also
satisfies first order matching criterion. And there does not exist second order matching
prior. We showed the propriety of posterior under proposed noninformative priors. And
some simulation for comparing frequentist coverage probability showed that reference
prior and first order matching prior matched the target coverage probability. The
reference prior is slightly better than probability matching prior in terms of coverage
probability when the sample size is moderate.

When the parameter of interest is the scale parameter, we developed reference prior
and first order matching prior. This first order matching prior does not satisfy the
second order matching criterion, and the reference prior does not give proper posterior
distribution. Some simulation revealed that the coverage probability of first order
matching prior matched the target coverage probability. But the Jeffrey’s prior did
not. We also proved the propriety of first order matching prior.

We developed the probability matching prior for the non-regular case of Pareto
distribution, the posterior distribution under this prior was improper.

And we provided a real data example. We calculated the Bayes estimators, and
depicted marginal posterior distributions.

As a consequence, we recommend the use of reference prior when the parameter of
interest is the shape parameter, and the use of probability matching prior when the
parameter of interest is the scale parameter.
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