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Abstract

In man cases, the measurement error variances may be functions of the
unknown true values or related covariate. In some cases, the measurement
error variances increase in proportion to the value of predictor. This paper
develops estimators of the parameters of a linear measurement error
variance function under stratified multistage random sampling design and
additional conditions. Also, this paper evaluates and compares the power
of an asymptotically unbiased test with that of an asymptotically biased
test. The proposed method are applied to blood sample measurements
from the U.S. Third National Health and Nutrition Examination
Survey(NHANES III)

Keywords : Complex sample survey; Errors-in-variables model; Linear regression
model with unequal variances; Small-error approximation; Power of two-side test.

1. Introduction

A measurement error generally is defined as the difference between an observed
value and an underlying true value. Some authors, e.g., Grove (1991), refer to
measurement errors as observed errors. If measurement errors are nontrivial, then
estimators from classical methods may have corresponding nontrivial biases.

Since the 1940s, people have been concerned about various problems associated
with measurement errors. See, e.g., Dalenius (1981) for a review of some early
literature, and Biemer et al (1991) for a more recent review. For specific work
with measurement error problems, see, e.g., Fuller (1987, sec.1.1.) and Carroll and
Stefanski (1990).

Carroll and Stefanski (1990) gave some results of small measurement error
approximation. One of their important results is that when measurement error is
small, under additional conditions one can directly use observed values without
accounting explicitly for the errors. Fuller (1991) gave a complex survey sample
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based errors—in-variables estimator of a vector of regression coefficients. under
both non-small error and small error conditions.

In man cases, the measurement error variances may be functions of the
unknown true values or related covariate. In some cases, the measurement error
variances increase in proportion to the value of predictor. In this paper, we
develop methods for estimation and inference for a linear measurement error
variance function model under stratified multistage random sampling design and
additional conditions.

We apply the ideas of Fuller (1991) to develop error-in-variables estimators of
the parameters of the linear measurement error variances function. After that, we
use the methods of Carroll and Stefanski(1990) to derive estimators of the
parameters when measurements errors are small.

In section 2, we define a measurement error model and a measurement error
variance function. In section 3, we define a sampling design and develop
estimators of the parameters defined in section 2 under both non-small error and
small error conditions. In section 4, we give theoretical basis for our simulation
work with power curves. In section 5, we gives the details of simulation method,
evaluate powers for a two-tailed test and interpret the power curves evaluated
from simulation work. We apply the methods of this paper to data from the U.S.
Third National Health and Nutrition Examination Survey (NHANES III).

2. Measurement Error Model and Measurement Error Variance
Function

Let Whbe a proxy for X. Assume that W is unbiased for X and two replicate
measurements are taken at each design point. Then following the notation of

Carroll and Stefanski (1990), for a given X: the model will be written as

W,=x+ U, 2.1)
with
for t=1,2,--,n r=1,2 where ¢ is a positive scale factor and Q(x,,7) is

an known function of parameter ¥ and X
The model (2.1) may be rewritten by

We= 2+ (3g§/2)d” 2.2

where £2,= 2(x;,7) and d,= 82/ 2y # are independent and identically
distributed with mean 0 and variance 1 for all ¢ and 7. In the following work



we will denote £(x,,7) as £, if it is not necessary to emphasize £, being a

function of (%, 7).

In many cases, the measurement error variances increase proportionally as the
values of predictors increase or decrease. To a first order approximation, it

sometimes suffices to model the measurement error variance 2(x,, 7) as a linear

function of x.

The linear measurement error variance function of x will be written as

2= 7+ nx, (2.3)

for a given X

Davidian and Carroll (1987) and Davidian (1990) discussed several method of
variance function estimation. Davidian (1990) showed through simulation results
that sample variances from small numbers of replicates (2 or 3 replicates) may be
more efficient than the log and the identity under normal distribution conditions.

Following Davidian (1900), we will consider the linear measurement error
variance estimation based on the sample variances.

Under model (2.1), for a given value X: and a known &, an unbiased estimator
of 2 is 07°S} where Si= (W, — Wy)?/2=06°S"; and standard deviation
SZU:z (Uy—U t2)2/ 2 is the sample variance within the #th unit. In addition, an

w =41
unbiased estimator of % is W = ) (Wy+ Wtz).

3. Design Based Estimation of Measurement Error Variance

3.1 Sampling Design and conditions

We assume the following design condition which is quoted with minor
modifications from the stratified multistage sampling design in Shao (1996,
p.205~206).

(D.1) The population has been stratified into L strata with Ny clusters in the
hth stratum. For the Ath stratum, %5 = 2 clusters are selected independently

across the strata. These first-stage clusters are selected with unequal selection
probabilities and with replacement. Within the sth first-stage cluster in the Ath
stratum, ” i1 ultimate units are sampled according to some sampling

methods, #=1,**,%#, h=1,-, L. The total number of ultimate units in the



L N, L 7
population is N= ;1;1\/ % and in the sample is ®~ EI,Z;”M. The total

L
number of first-stage clusters in the sample is *F ™~ ,,El"h.

Based on the sampling design (D.1) and model (3.1), we will use the following
conditions.

(C.1) The finite population expectations of x” exist and are bounded for
0<p<4 as k— o,

(C.2) The sixth moment about the origin of d exists and is finite.

(C.3) Eg(ds) = 0 where Ee( ) denotes expectations taken based on only the
model (3.1).

3.2 A Linear Measurement Error Variance Model

Under model (21) and (23) when we have #n observed values,
(Y sij» X omi) = (5_232;1,',:, _ij-), for a given ¢ instead of (thj'xhij), we can
write a model,

Yoii = Yot NXpit g
CY sniis X oni) = (Vnijs Xai) T (@i, i) (3.1
where 4i; are independent and identically distributed with mean ( and a finite

variance 0%, for all (hif), Yui= Lpj, @Wp;= SZUhij_ 2, and Up; =24 _Uhij-. The

T]hii' = %(Uhifl'{_ Uhii?) . The variable @®p; is an independent (0, O'whij)
random variable with O wohij = Var (SZUhij) and the variable ¥p; is an
independent 0,0 W;,;,') random variable with 0 uupi = 32-9;;;‘;'/ 2. Note that under
model (22) Stuni= LwS’mi where Sii=2 dux ~ dip)® and Smy is
independent and identically distributed with mean 1 and a constant variance, say
c. Therefore Var(Sy;)=c; . If we assume that the U follow a normal
distribution, then c¢=2. We will assume here that the errors, dnj in the

regression equation (3.1) are independent of (¥ij» @uii» %) for all (hif).
For convenience, we will replace the triple subscript (A4#) with the single

subscript ¢ from the following expressions if it is not necessary to specify strata,



clusters and ultimate units.
3.3 Estimation of moments of the finite population
Under the survey design (D.1) and model (3.2), when we have N true values,
(Y:,xt), define
N N
=N 20 x) A %) 5ng T5=N"" 21 x)',
and when we have N observations of (Y s, X &) instead of- (J’t,x:), define

Y N
ZX’X“:Nwl ;(1 X50'(1 X)) and 2 %%, = N7t ;(1 Xs)' Yy

and also define
2 .= diag(0, 0 ,,)

A'S
— 1
with Tw =N ,‘:16““' where O = 6°2,/2.
When we have # sampled true values, (¥:.XJ), from a finite population, &

and & » can be estimated by
M, =N"! t‘élw,(l )1 %) g My=N"" ;wt(l x)'y,

where W; is a unit-level survey weight. In addition, when we have observations

of (Y5, X5 in the place of (yt»xt), we may have
Mxx,=N7' 2wl Xa)' (1 Xa) png Mxp,=N"' 2wl X5)'Yy
instead of M, and M, In addition, 2. can be estimated by

n
] - > — n-1 ~ -
S Suu — dlag (O, O.Buu) where 0 sun N tglw‘ Out and Oy = S%/z
3.4 Measurement error variance estimation

3.4.1 When ¢ is not small

Under the design (D.1) and model (3.1) , we have an estimator of ¥ = Z;xlzxy
given by 7= M;lexy. The My and M,y can be estimated by

_—

Mxx = MX,,X,,— Suu and Mxy = MX,,Y,,.



Thus, an estimator of ¥ from #» pairs of (Yo X o) is
;EIV, s Mxx" Mxy 3.2
where ;'EIsty = ( }E,V. sov, 05 3’EIV, av.1). Under design (D.1), model (3.1),

conditions (C.1)-(C.3) and additional regularity conditions, 3‘E1V,wy is a consistent
estimator of 7 (Heo, 1999).

An estimator of the variance of the asymptotic distribution of 3’EIsty is
-~ & —2 a4y -l = —1
Va\r( YEW, o) = (rZﬁw’) M., V M, (3.3)

where

e~

T/ - hzlvl_:%i)— g(zhi— ;h)(zhi— ;h)’

ki d 1 75
2. = Wi, 2, = — Fa
hi ]; hij* hij » h n, = hi

— -~ -~ "l 2 -~ ’
dy; = ( V snij» X onij U o T2 Shi;‘VEIV.svy.l)

and ’bam‘; =Yui— (1, X g ;'EIV,svy (Fuller, 1991, p. 624).

3.42 Under small error approximation

When the measurement error is small, by the result of Carroll and Stefanski
(1990, p. 654), we can rewrite the model (3.2) such as

Yy=n+nXat+d (3.4)
where ¢:= (¢, + cg,)— 71%; with
Ee(dlx) =0 and Ve(dlx) = G+ c @+ A(822,/2).
The variance of ¥: for given value ¥, Var (¢/lx)), goes to 5+ c® as 6—0.

The model (34) has the form of a simple linear regression model with unequal
variances. Therefore, under the sampling design (D.1) we have an ordinary least

squares estimator of 7,

TrEG, oy = M i, M v, (3.5)
where ;’REG,svy = ( ;'REG, sov, 02 ;REG. av1) . Under the design (D.1), model (3.4)
and édditional regularity conditions, }REG, sy 1S a consistent estimator of

— 1
r=2 X,X,Z X,Y,.



4. The Power of the Test

In this section, we will examine the relative performance of an asymptotically
unbiased test using }msvy defined in expression (3.2) relative to an
asymptotically biased test using ;REG,svy defined in expression (3.5). This
comparison centers on evaluation of the powers of tests based on these two

estimators. This power evaluation uses simulation work based on blood sample
measurements collected in NHANES I1I.

4.1 Confidence interval method

Assuming that the true 71 is 710 and that one tests
Hy: n=9¢nr, us. H :n¥én, (4.1)

where ¢+(0 is a constant. Note that for ¢+1 one is to test a wrong null
hypothesis.

Let ;’1 be an approximately unbiased point estimator of 71,0 and let
( 7.,1L» 7. u) be a confidence interval based on 7. Then, Hy: n=¢n,
will be rejected if a confidence interval ( 3’1,1_, '7"1, ) does not cover $71.0.
Thus, note that
a= Pr{nE( 3’1,L’ 3’1_ U)l¢=1)
and also note that the power of the test (4.1) is given by

1-8=Pr{ne( 1. 70l (4.2)
That is, in the confidence interval method the power is defined by the rate of
confidence intervals not covering an incorrectly stated null parameter value when
we take samples repeatedly from a given population through a given design, and
evaluate confidence intervals based each sample.

4.2 Confidence intervals for the parameters of measurement error variance
function

In section 3.4.1, we obtained an approximately unbiased point estimator of N

expressed by }m sy, 1 in expression (3.2). A confidence interval for 7 is given
by

( 3’E1V,1,L» }EIV,],U) = ;’EIV,svy,li t(%,df) - o( }EIV,svy,l) (4.3)

a
where 2  df) is an upper (a/2)th percentile point of ¢ distribution on df



’\2 ~ R .
degrees of freedom and 0 ( YEIV, s.,y,l) is the second diagonal element of

Va\r( ;’EIV,svy) obtained from. expression (3.3).

In general, under a complex survey design, the degree of freedom of ¢
distribution is determined by

df= F(n—1)

where L is the number of strata, ”; the number of primary sampling units
within each hth stratum and p the number of parameters to be estimated .in. a
model. See, e.g., Korn and Graubard (1990)

When ¢=1, the confidence interval expressed in (4.3) will approximately
achieve the nominal level of significance a.

In section 3.4.2, we have an estimator from the regression method expressed by

}REG,svy in expression (3.5). The ?REGsuy gives an asymptotically biased
estimator of 7y .for non-small & (Fuller, 1987, sec. 1.1). The confidence interval for

71 obtained from ;REG sy, 1 18
-~ ~ ~ a -~ -~
( YrEG.1.L» TREG.LU) = TREG.Sw.1% t(‘z_:df) * 0( YrEGay,1) 4.4)

~2/, ~ . . . .
where o ( 7 RECG. svy,l) is the design based estimator of the wvariance of

;REG, s, 1. The confidence interval in (4.4) generally will give a biased test.

5. Application to the U.S. NHANES III Data

5.1 The U.S. NHANES II Data

The U.S. Third National Health and Nutrition Examination Survey (NHANES
IlI) was conducted for the U.S. National Center for Health Statistics (NCHS) to
assess the health and nutritional status of the non-institutionalized -civilian
population in the United States. NHANES III is a large-scale sample survey based
on a stratified multistage design with 49 strata. Within each stratum, two primary
sample units (PSUs, roughly equivalent to counties) are selected with unequal
probabilities. Additional levels of sampling select secondary units (roughly
equivalent to city blocks), households and individual persons. Each selected person
is asked to complete a questionnaire and to participate in a very thorough medical
examination. ‘

As part of NHANES III, the NCHS considered using a formal two-phase
sampling design to obtain replicate measurements from a relatively small subset of
the group of original respondents. '



5.2 Simulation methods to evaluate for power curve

For simulation work to evaluate power curves, this section was focused on that
how well an asymptotically unbiased estimator }EIV,svy and a asymptotically

biased estimator }Rm,wy detect a wrong: null hypothesis for different sizes of

measurement error scale factors, &, and. different rates of deviation of null
hypothesis value from the true parameter.
The detailed steps are described in the following subsections.

5.2.1 Construction of a large population

First, we selected 2,940 PSUs out of 98 original PSUs through simple random
sampling with replacement (srswr). After that, we randomly divided the set of
2940 PSUs into 49 strata, with 60 PSUs in each stratum. Specifically, the first

selected PSU through the 60th selected PSU were assigned to stratum 1, the next

61th through the 120th to stratum 2, and so on. The resulting stratified
population of 2,940 primary units was then hold fixed through the remainder of
the simulation work in this chapter.

522 Random sample

Within each stratum with 60 PSUs, we selected two PSUs through srswr. Thus,
this new sample is composed of 49 strata with two PSUs each. We defined the
first selected PSU as PSU ONE and the second selected PSU as PSU TWO
within each stratum. All persons belonging to selected PSUs are included into the
new sample.

52.3 Parameter values

For our simulation work, we used this ;E[sty as the true 7. In the current
discussion of our simulation work, we will focus on results related to the
cholesterol measurements in blood samples of NHANES IIL

In  cholesterol measurements in blood samples of NHANES III,

Yerv, sy = (—1425.728, 20.656)". Therefore, we will consider

£,= —1425.728 + 20.656x, 5.1
as the true recalled measurement error variance for cholesterol measurements for
the Z-th person. In addition, we used the average of two original measurements,

_Wt. , for each ¢-th person as the true X.



10
524 Random errors

In model (2.2), the 7th observation for #-th person is expressed by
W, = x,+ (621%a,
where the random variables @y are independent and identically distributed with

mean 0 and variance one for all 'f and 7. In our simulation work, we assumed
that

d, 24 N0, 1)
for t=1,-,n, r=1,2. Using the random number generator, uniform( ), and
the inverse cumulative normal function, #nvnorm(), of the Stats package
(StataCorp, 1997, section 20.3.2), we generated . '

52.5 Simulated power curve

For each & being equal to 0.125,0.25,0.375, 0.5, 0.625,0.875, 1.0, 1.5 and

2.0, we generated m samples of 98 primary units selected from the stratified’
population described in section 5.2.1. From the each sample persons included in a
given sampled 98 selected PSUs, we computed errors-in-variables estimates,

YErV, s, from expression (32) and regression estimates,  YrEG, sy from
expression {(3.5). As the result, we had total of m }EIV.svy estimates and

;'REG, sy estimates, respectively.

As a result, we had m confidence intervals from each of the errors-in-variables

and the regression methods for a two-tailed test.
For a given 8, we determined whether each confidence interval evaluated from

each individual sample covers 9710 or not for different ¢ being equal to
0.1,0.3,0.5,0.7,0.9,0.95,1,1.05,1.1,1.2,1.3,1.5, 1.7, 1.9.

Out of m intervals for a given ¢ and a given method, we counted the number
Cm of confidence intervals, which were covering the null value #719. Then, the
estimate, 1—8, of 1—8 in expression (4.2) is given by 1—cu/m for a given
0 and ¢. Using these estimated powers we compared the powers of the

errors-in—-variables method using YErv, oy to the regression method using

}REG, svy.
5.2.6 Confidence bounds for power

For each possible combination of (&, ¢), we may consider the event in which
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a confidence interval that is evaluated from each simulated sample covers the null
hypothesis value #71,0 as a binomial trial.

Let X 4,4 be the number of confidence intervals not covering $071,0 out of m
simulated samples given 0= &p. Then, X5, 4, has a binomial distribution with
parameters m and 1-8 &. ¢, Where B %. 4 1S the true coverage rate of ¢o7’1,o
when 0= &,.

Under the assumption that m is large enough for all relevant combinations of
(38,¢) to apply the central limit theorem for proportions, a 95% confidence
interval for power 1— B point is evaluated by,

(1—-R:1.96[m ~{ B(1 - D}~ (52)
5.3 Power Curves and Interpretation

We now evaluated powers for all possible 150 combinations of (&, ¢), that we
preassigned, according to the steps described in section 52. To draw
three-dimensional power surfaces, we put #71,0 = 20.656¢ on the x-axis, & on
the y-axis and estimated power, 1—pB on the z-axis. Using 150 evaluated
power points and linear spatial interpolation, we drew three-dimensional power
surfaces for both methods with m=5,000 simulated samples.

Figure 5.1 shows that for all 8=(0,2], the errors-in-variables method gives an
approximately unbiased test. However as & is increased, the power of the
errors—in-variables method is very small

Figure 5.2 shows that as & increases the bias of the regression method is

severe. The power at 71 that is positively deviated from true 710, that is ¢) 1,

is much larger than the errors-in-variables method, but at the true 71,0 = 20.656
the type I error is nontrivial for the regression method. For the negatively

deviated 71, that is ¢ <1, the errors-in-variables method has larger power than
the regression method.
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Figure 5.1. Three dimensional power surface for the errors-in-variables method for
cholesterol measurements

) in blood samples of NHANES III. Powers were
estimated with 5000 simulated samples using a stratified cluster design as

described in sections 52.1. and 5.2.2. The nominal Type I error rate is @ = 0.05.

Two-Tailed Test Power of Regression Method

(Level of significance = 0.05)
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Figure 5.2. Three dimensional power surface for the regression method for
cholesterol measurements

in blood samples of NHANES III. Powers were
estimated with 5000 simulated samples using a stratified cluster design as

described in sections 5.2.1 and 5.2.2.. The nominal Type I error rate is = 0.05.
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6. Conclusion

We have defined a superpopulation measurement error model and developed
point estimators for the parameters of the associated linear measurement error
variance function. Following Fuller (1991), we developed a consistent
errors-in-variables estimator of the coefficients of the linear measurement error
variance functions. Following Carroll and Stefanski (1990), we developed a
consistent estimators under small measurement error approximation.

Based on those estimators, we evaluated power of two-sided tests and compared
the power of an asymptotically unbiased test using the errors-in-variables point

estimator, 3’511/, s, With that of an asymptotically biased test using the regression

point estimator, YrEG, su.

The simulation work indicated the following: for two-tailed tests applied under
the conditions considered here, the errors—in-variables method gives slightly biased
test, but it may be considered as an approximately unbiased test because the
amount of th bias was small. Even though the regression method has higher

powers for the specific constellations of parameters ¥ and & in the analysis, it
has non-trivial bias for all predetermined d.
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