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Asymptotics in Load-Balanced Tandem Networks
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Abstract

A tandem network in which all nodes have the same load is considered. We derive
bounds on the probability that the total population of the tandem network exceeds a large
value by using its relation to the stationary distribution. These bounds imply a stronger
asymptotic limit than that in the large deviation theory.
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1. Introduction

We consider » M/M/1 nodes in tandem as shown in Figure 1. A customer arrives at
node 1 from outside according to a Poisson process with rate A and, if necessary, waits in a
buffer until the node gets free to get served. Once service is completed at node 7 the
customer is routed to the next mode ;+1 (1<i;<n—1). After getting served at node » the
customer finally leaves the network. Service time at node i is exponentially distributed with
mean 1/x; (1<i<n—1). Each node operates on a first-in-first-out basis.
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node 1 node 2 node »
Figure 1. A tandem network of » M/M/1 nodes

We analyze an overflow probability p , that the network population reaches a large value

K before returning to O, starting from 0. Glasserman and Kou(1995) proved the following
asymptotic limit for p x in the tandem network:
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where o | is the load of the most highly loaded node in the network.

In this paper, we derive upper and lower bounds on p . by the stationary distribution, and
we then obtain the stronger asymptotic limit than (1) for the load-balanced tandem network in
which all nodes have the same load.

2. Main Results

A tandem network can be described as a Markov jump process X(9, >0 on S=N’,

where the state x= (x,,x,,,x,)€ S depicts the system when there are «x, customers
waiting or being served at node i Under the condition that p;:=Au<1 for all
i=1,2,-, n, the stationary distribution of X(#) is given by

(=Tl i(1—p o}, = (x1,25,,x,)€ S (Walrand(1988)).
In particular, if all node have the same service rate y, the stationary distribution can be
simplified as
K3 =100 5 F= (r,x0, )

where o =A/u 4denot&s the same load of nodes.
Let us define an overflow set by

Cx=xx+x,++x,=K,

the set of states in which the network population is exactly K. Notice that the stationary
distribution of Cg, #(Cg) is given by

HCr) = 3 (1—p) 7 2

gx,:K

= (1-0"* X2 1 )]

IPIEY

i

= ( K:fl_l )(l—p) "o k.

In the following theorem, we show that the overflow probability p . can be bounded by
the stationary distribution of C, (C k).

Theorem 1. For an open stable load-balanced tandem network,
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e\ (Cr)<pg < cym(Cg).

Proof. Let X(#) be the uniformized(Walrand(1988)) Markov chain of the original process
X(#), where we assume without loss of generality that we have re-scaled time such that

A+np=1. Then, the Markov chain X(#) has the same stationary distribution 7z as the
original process X(#).

Next, let P(n) be obtained from X(#) by watching it in the set (UC, Then, P(n)
is also a discrete-time Markov chain with the stationary distribution 7 given by

’H?=d?%q2 ﬂ?ﬂu

ye 0UCk
and the transition matrix P(x, y) for x, ye 0UCk. Specifically, we have
0,00 = PYWO)=07P0=70

P X(n)= 0 before ’X(n)ec,a X(1)#= 0, ”X(o)— 0

><P X(1)# 0 X(0)="T0+P X(1)="10X(Q) =10
PX(n)=10 before X(n)eCx X1+ 0, XO0)="0+np
]._PKA

I ||

because p =P R(n)eCy before X(n)= 0| R(1)+ 0, X(0)=0. Therefore,

Z 200, ),

x€Cy

using PG, 0)+Z P(0, 0=1

xeCx

Now, let Y(x) be the time reversal of P(#), so ¥(#) is a Markov chain with the
same stationary distribution 7 and its transition matrix P given by

PCx, )= M‘—)— for x, ye TUCk

(%)

Thus, px can be rewritten as

Since P(x, 0)<1 for all zeCy, the estimate ¢, in the upper bound is given by
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ci=[A1-p"™ L

Notice that for xeCy with x,=0, (0, =0 because the process X(x) needs at
least one external arrival at node 1 to hit Cj for the first time. Thus P(x, ()=0 for

reCy with x,=0. If we let
CK'Z==CK~_9;ECK:x1=O,x2+"'+x,,=K,

clearly from (2) we have

HC) = gy HCW ©)
2 —ln'ﬂ(cx)

for all K>1. Therefore, if we can show, for each x=Cy’, that P(x, 0) is bounded below
by a positive constant, which is independent of K, the lower bound for p is given by

px=cy 1(Cg), @)

where ¢, denotes a positive constant, independent of K.

Let X(# be the time reversal of the original process X(#). Then, it is well known that
the time reversal X(#) is a Markov jump process for another tandem network with the same
number of nodes and the same service rates but different arrival pattern (Walrand(1988)). In
the reversed tandem network there is an external arrival process at node » and after service

completion at node : the customer moves to node ;—1, 2<i<# and finally leaves the system

at node 1. Figure 2 depicts the reversed tandem network evolved by X(#).

— CIL—CEI— <l

node 1 node 2 node »
Figure 2. The reversed tandem network

Let X %(#) denote the Markov jump process when the time reversal X(7) is started with
xe C . Anantharam et al.(1990) showed that the process X X(# converges to a fluid limit
F(? in the sense that, for any ¢,>0 and all &)¢,

lim P{sup o</<1 | 71{— XMEH)-F) | zell —}{— X (0)~ F(0) | <eq}=0, &)
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where |Xl=max|X ] and T=00>0:F (=0 for all i=1,",n
Anantharam and Ganesh(1994) also proved that gpi( f), the total amount of fluid in the

network, is strictly decreasing at a positive rate as long as the amount of fluid is not zero,
and the fluid Limit F (#) at node i stays at zero after it reaches zero until the total amount

of fluid ZIF,'(L‘) becomes empty. That is, if we let T:=c0)0:F (=0 for i=1,2, n,
then

F(p=0foral T,<t<T, ©)

where 7 is the time at which ;F,-( £ hits zero.

Notice that
lim 4 X X0)=F.(0)

exists for ;=1,2,:-, »n. Then, from (5) and (6) we can determine that the following statements
are true with probability going to one as K goes to infinity;

,21 X ®(pceK

for all K- max(T, T, -, T,)<t<KT and in particular,

; X, NKT)<eK. 0

Let T denote the first time when the queue length process X ¥(p) hits the state 0.
Then, by applying Corollary 1 in Anantharam(1989) it follows from (7) that T ,—KT is
stochastically dominated by the sum of eK independent, identically distributed random variables
of finite mean and variance. Since the external arrival process is Poisson of rate A, the total
number of external arrivals in the period [KT, Tj] is less than a constant times eK, with
probability going to one as K—oo. This implies that with asymptotic probability one,

Zﬁ X (< const - K

where the constant const is independent of K and is >0 arbitrary. So it enables us to extend
the validity of (7) through the period [K - max (T, T, -, T,), Tk, that is,
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g X ®(D< const - eKforall K+ max(T, Ty, T)<t<Tk @)

with asymptotic probability one.
Now, we investigate the process g‘ X,%®» duing the time period
(0,K - max(T, Ty, T,) Let Z(#) denote the process started in the same initial condition

as X %(#), but with the output of the nodes replaced by their virtual departure. Then, the
queue length process Z(#) dominates X (), that is, for any sample paths w,

Z{t)2Xtw), i=1,2,,n t20.

To see this, we use the coloring method employed in Anantharam and Ganesh(1994).
Color red the virtual departures from each node that are not actual departures and color blue
all other departures from all nodes and external arrivals. Note that red customers can arrive
only when at least one node is empty. The idea is that when a service occurs at a node with
non-empty queue, we are free to decide which customer in the queve departs without affecting
the process of total number of customers at the nodes. Blue customers always have precedence
over red customers, i.e. when a service takes place at node ; red customer in queue at node
i does not move unless there is no blue customer in queue at node ; Then, we can see that

X %(#) is the process of blue customers, while Z(#) is the process of all customers.
Observe that the process Z__I;Z {9 is a Markov jump process with the arrival rate A, the
service rate »u, and the transition probability to itself after the service (»—1)/n, started from

ng,-(O):K. Since A< u, the process gzi(t) is stable. Then, it can be seen that for the

process 31 Z (1),

P;Z,»(t)=0 before ;;Z,-(t)=K

> ﬂxpg“z,(t)=o before g;z,-(t)=1<| gzi(0)=K— 1,

where 4 is the probability that Z‘Z,-( p is decreased by one before it is increased by one or
jumps to itself. From the gambler’s ruin probability(Feller(1968)) we obtain
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~ _ R T ST} L
nglz,-(t)—o before gz,-(t)—Kl ,2,21'(0)—1{ 1= D EA )

> 1=

for al K>1.
Let Ty=o00t0 Z‘,IZ {#)=0. Since the stable Markov jump process gz {5 does not

grow by K in time linear in K, with probability one, we can have

lim P z:lZ,(t)(K for all To<t<K- max(T, -, T,)=1.

Hence, 2} X ; %($ which is dominated by 212 {(#), does not hit C x before the time
K- max(T,,-, T,) with probability bounded away from zero because A{yx in (9).
Combining this with (8) gives 3. X, %(§<K for all 0st<T, with a positve
probability, independent of K. Thus X(#) with initial state xeC, satisfies
limoo g P X()="0 before X(&) hits C>0.

Then, since the time reversal of the watching of the embedding is the same as the
watching of the embedding the time reversal, we have that for all xeCy/,

P(x, 00,
independent of K. So we finally obtain the lower bound on p . given by .
p K = c 1”( C K. )s

where ¢, is a positive constant, independent of K. For large enough K, from (3) and (9) the
explicit estimate for ¢, is given by

c1=[np(l—p)"117L .
Corollary. For an open stable load-balanced tandem network of which load is p,

. logpg—logo®
11{1_%0 log K =n—l. (10)

Proof. Substituting (2) into the bounds on p, in Theorem 1 and noting that
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( n—1 )_ _

}(i—r}go log K =n=l
give the asymptotic limit in (10), which is stronger than (1). ]
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