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1. INTRODUCTION

As the observations, transmission and archiving technology develops, amount of available
digital information increases rapidly. For the dynamical methods and numerical weather models,
governed by well-settled equations of physics, this “exponential” (i.e., self-enhancing, always
faster than before, although no exact time-dependence is known by the authors) development
can be used in a fairly straightforward way. Of course, this development requires much
innovation in data assimilation, numerical model development, subgrid-scale parameterization,
etc.

In statistical approaches, however, we can not directly employ additional laws. The model
of the whole unknown complexity is determined by the intuition of the researcher and the
statistical recipes recommended by the contemporary computing technology. Both engines of
development are limited, however, by the fact that there is one dimension, the time, where the
increase of information, in most cases is only linear. That is, the more frequent sampling in
time does not yield independent data, due to the diumnal cycle and the comparable lifetime of
relevant atmospheric phenomena.

The present paper recommends a classification of diurnal precipitation patterns represented
by 59 stations of South Korea. The final 15-25 classes transforming the 59 continuous
variables into one discrete number are defined by cluster analysis after a preliminary factor
analysis.

Precipitation has been selected to demonstrate the following methodology as this variable
is mainly related to meso-scale atmospheric phenomena and influenced by physical processes of
even smaller scales, including microphysics of cloud droplets and crystals. Hence, deterministic
computation of this atmospheric variable is rather limited compared to the requirements of
medium-range weather forecasts of especially, climate change scenarios. On the other hand, this
important atmospheric variable inter-relates with many environmental factors and has large
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impact on several sectors of economy. For these two reasons, precipitation is used in statistical
research and applications quite frequently. ,

Of course, neither the factor (principal component) nor the cluster analysis is new tool
even in precipitation climatology of South Korea. Several studies have already been performed
(e.g. Seo and Joung, 1982; Ho and Kang, 1988; Moon, 1990; Park and Lee, 1993; Lee and
Park, 1999). Our study differs from those in its scope, namely the above studies are aimed at
objective classification of the stations (sub-regions), whereas this study is focused on
determinating of different types of diurnal precipitation pattern. In other words, this study
classifies the days of the available archive.

2. DATA

Daily precipitation data observed at 59 stations of South Korea are used, including Cheju
Island. The Ullung Island as a single station is omitted in considering the results of factor
analysis.

The precipitation classification is performed for 24 years between 1973 and 1996. This
period (8760 days, as the 6 leap-days were excluded) is separated into shorter sub-samples to
reduce the inhomogeneity caused by the annual course of precipitation (Figure I). More
specifically, area averages of the 59 stations are considered including all days, ie. 24 values
on each calendar day and also on the wet days, i.e. on days when the observed precipitation is
at least 0.1 mm at the given station. Besides the averages, we also calculated the area mean
value of point-wise standard deviation on the wet days.

Although three curves exhibit strong inter-diurnal variability, there is a well distinguished
period in the middle of the year when all the curves are in maximum. This is the well-known
summer period, connected with bi-directional march of the monsoon (“Changma”) front over the
Korean Peninsula and with the smaller scale convective activity including the episodic
typhoons. This 3-monthly period is selected to be one season, whereas its winter opposite,
exhibiting the minimum average and conditional standard deviation, can also be clearly
delimited. So, we selected four 3-monthly periods, but one should note that, according to Fig
1., each season starts by 15 days later than the general ones. In the followings, the seasons,
called winter, spring, summer and autumn will always mean the sequence of the year between
December 16 ~ March 15, March 16 ~ June 15, June 16 ~September 15 and September 16
~ December 15.
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3. METHODS

Classification of diurnal precipitation patterns is performed by cluster analysis (Section 3.2)
applied not for the point-wise observations, but for the series of rotated loadings, computed by
factor analysis (Section 3.1).

3.1 Factor analysis

Factor analysis is generally used for reduction of data sets, represented in a large number
of stations or grid points, still keeping the essence of their common variability, by resolving
the initial variables into much fewer non-correlated ones. The monograph by von Storch and
Zwiers (1999) gives a comprehensive theoretical overview. Factor analysis can also be used for
immediate pattern classification (ie. Bartzokas and Metaxas, 1993), but this requires larger
number of spatially distributed data (stations or grid-points) than cases (days) to be classified.

Each original variable, P, i=1, 2, .., n, can be expressed as P; = a;F ,+a,F,+

agFs+ ... YanF, ( m<n), where F, j=12, .. .. , m, common for each i, are the
Jactors and a; the loadings (scores). First, it is necessary to specify whether the factor
analysis is performed on a correlation matrix or a covariance matrix. We selected the
covariance matrix to avoid the non-natural transformation related to standard deviation of
precipitation at each station. In our view, this is also an immanent feature of the spatial pattern
which is meaningful to keep before the analysis. This selection also determined that we
perform a principal components analysis, as a specific realization of factor analysis.

An important question is the number of the factors (m) to retain. On this matter, many
criteria have been proposed. It is noted that Jolliffe (1993) states ”...different objectives for an
analysis may lead to different rules being appropriate”. In this study, the Rule I or Guttman
criterion is used, which determines to keep the factors with eigen-values be more than 1 and
neglect the ones that do not account for at least the variance of one standardized variable.

Another vital stage is whether, or not, we should rotate the axes (factors). This rocess
achieves discrimination among the loadings, making the rotated axes easier to interpret. In this
analysis the Orthogonal Varimax Rotation is applied, which keeps the factors non-correlated.
After rotation, the original precipitation P; at station, 4, is P, = a’,Fr,+ a’ oFr o+

a gFra+......, a" imFrn( m<{n), where the a';, a'y .., a',, rotated loadings are
later used for classification. The loadings are specified by the regression method to ensure the
best fit of the initial data at each station.
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An important feature of the non-rotated ¢ ; loadings is that they represent a decreasing

order of variance as j increases. This variance is equal to the eigen-values of the analyzed
covariance matrix. Moreover, the factors is the most effective set of orthogonal functions in the
sense, that they “explain” the highest portion of variance retaining any fixed number of m.
After rotation we loose this optimum feature and the variance is distributed more evenly
among the retained loadings. Nevertheless, increasing sequence of loadings mean decreasing
importance in explaining the variance, which is a key feature, used in cluster analysis with
special emphasis. Application of rotation is not compulsory, but in our case it is also explained
by the strongly skewed distribution of the loadings of first (non-rotated) factors (see Section
4.1).

Factor analysis was already used for annual precipitation of Korea by Moon (1990) to
classify the territory of the country. Similar interpretation is briefly exposed for the unified
annual sample in Section 4.1, too. The point of this application is the mapping of the
maximum a’ ; loading at the station, i, which selects that Fr, rotated factor for which the
loading is >0.7. (According to the general experience, this threshold designates maximum one
region to belong to.)

Another interpretation of the factor analysis is related to the explained communalities, i.e.
that part of the initial variance which can be “explained’by linear combination of the retained
factors and the loadings. If this mean square difference between the original and the estimated
values is low for a given station, than this station exhibits large individual variations not
correlated to those at the other stations. This interpretation is also illustrated in Section 4.1.

3.2 Cluster analysis

Cluster analysis produces hierarchical clusters of cases based on distance measures of
dissimilarity or similarity (e.g. Anderberg, 1973). This method is employed to classify the
diurnal precipitation patterns, represented by series of rotated factor loadings. The latter ones
exhibit larger variance at the lower serial number of factors, proportionally to the explained
variance, i.e. stronger difference generally occurs in most important components. Besides the
5-8 factors, explaining 81-89 % of the total variance (Section 4.1), the analysis is also
performed for that number of loadings, which commonly explain 95 % of the initial variance.

Since we do not a priori know, how many clusters to define, hierarchical joining is
applied. This requires preliminary definition of distance measures for any pair of cases and
specification of the algorithm, which unequivocally selects the two clusters (or single cases) to
be unified at a given stage of amalgamation. The latter is based on a distance index to be
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minimized, which characterizes common dissimilarity.

Having tried several possible versions, in majority of the classifications we use Euclidean
distance measure, i.e. the square root of the sum of the squared differences between the
components of each case. Unification of the clusters follows the Ward’s method (Ward, 1963),
which minimizes the sum of all within-cluster variances.

For discussion purposes, pattern correlation between two diurnal sets of loadings is also
applied, which sorts the days with similar spatial distribution into one group, even if the
amounts are different (Section 4.2). This approach is accompanied by method of Furthest
Neighbors, which identifies the distance of two classes by the maximum possible distance
between the corresponding pairs of points. The latter method will sometimes be referred as
relative classification to demonstrate the importance of the area mean amount of precipitation in
the resulted clusters.

The most difficult step of cluster analysis is the decision about the number of clusters to
retain and interpret as the final solution. This decision should consider the retained number of
classes and the efficiency of the classification. Both conditions can be considered by analyzing
the agglomeration schedule, which shows the order and distances at which cases and clusters
are combined into a new cluster. Fast orientation is generally supported by qualitative
representation of agglomeration in form of horizontal or vertical icicle plots and dendrograms,
but in our analysis it was not feasible, due to the large number of cases (1402~ 1952 days in
the different seasons).

If the function of distance on the number of cases exhibit sudden changes (breaks), than
the clustering can be naturally terminated before such an increasing jump. One should note
however, that this distance is related to the smoothed factorial representation of precipitation
field, not to the total variance of the original patterns. Hence, a more established solution
should be based on computation of the quality of representation for the original fields. The
explained variance of the clustering, EV(k), depending on the number of clusters, k, is a key
characteristic for this, defined as

EV(k) =

N
2 A 3PP
2 S
where (P> is the cluster-mean precipitation at station, s, derived from all P values of the

N, days, that belong to the i-th cluster. For better interpretation, this explained variance is

compared to the k = 1 version, EV(1), and the RV(k) = EV(k)/EV(1) relative
variance is expressed in %. The lower this ratio, the more effective the clustering.
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Since in our case both quality indices behaved rather smoothly, not allowing an optimum
selection by this criterion, another point of view, ie. the minimum number of cases in the
smallest cluster, was also considered. Sothe selection of the final clustering is performed in
three steps:

1.) Candidates for termination were selected according to the N ., size of the smallest
cluster, ie. N, > 1, N_p,u>5 N _;,>1% and the last stage before N, >5%.

2.) The RV(k) relative variances were determined for the candidates. The second one
was selected, as it was just slightly worse than the first one and they represented the a priori
expectations about the seasonal differences: ie. the most clusters occurred in summer and no
big differences took place among the three other seasons.

3.) This selection was finally corrected by decreasing the number of clusters by one in
spring and summer, which gave further slight improvement in the explained variance.

The final clustering was also characterized by a modified formula, taking the differences
of the cluster-mean precipitation into consideration by inversely weighting the squared

deviations, as

N'—l—ﬁ —(P D) 2/CP
WVt = 2, 2w 2 S

This weighted variance is also standardized by the WV(1), no-clustering reference value.
The idea of this alternative index is to consider if the variance is dominant in the high or
low-precipi-tation clusters. Of course this parameter can not be applied for the dry (no
precipitation) cluster. .

4. RESULTS
4.1 Factor scores for further analysis

The loadings, resulted by factor analysis are just input variables for the pattern
classification. The factors and the seasonal loadings are analyzed in a separate study (Mika et
al, 2001). Here we focus on four aspects of these computations, evaluating:

- How detailed is the representation of the original patterns by the applied 5 8 loadings?
- Can factor analysis or rotation change the strongly skewed distribution of precipitation?
- How can we interpret the geometry of the rotated loadings, applied for regionalization?
- How can factor analysis be used to decide about inclusion of Cheju and Ullung Islands?
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The retained factors and the explained variances are displayed in Table 1 to illustrate the
answer to the first question. The retained 5 (winter), 6 (spring and autumn) or 8 (summer)
factors explain the 81 89 % of variance. To explain 95 % of that, we would need much more,
14 30 factors to retain. These seasonal differences correspond to the conditional means, also
indicated in the table. Considering the wet days only, the area mean precipitation is almost six
times larger in summer (8.56 mm/day) than in winter (1. 52 mm).

Statistical distribution of the area average is rather close to the exponential one, as
indicated in Fig. 2a without seasonal separation. Overwhelming majority of the wet days
represent low precipitation with a steep and monotonous decrease of frequency at higher
amounts. Not surprisingly, distribution of the first non-rotated factor loadings (Fig. 2b) is rather
similar, indicating that this major component, representing 39 64 % of the original variance in
the different seasons, are strongly related to the area mean precipitation. Rotation of the factors
(Fig 2c) can not change the situation too much either. The only difference is that here the
kurtosis of the distribution is much larger than that of the normal distribution. The point of the
matter, ie. the strong dominance of the low precipitation averages, remains valid for the
rotated components, too. On the other hand, the rotation yields more symmetric distribution of
loadings and more even distribution of the variance among the chief retained factors, what
increases the freedom of clustering.

Seasonal rotated scores are input variables of the cluster analyses, also representing
variously distributing fields (Mika et al, 2001). Here we present another illustration, based on
rotated loadings of the all-year factor analysis of the wet days (6268 days in the sample).
These factors can also be interpreted as sub-regions it which precipitation variations are similar
to each other and, at the same time, relatively different from those in the other regions. Fig.
3a indicates the results of this analysis for data of the whole year in 60 stations including
Ullung Island. This non-seasonal analysis separates 7 regions with reasonable spatial
distribution. The regions are determined by the maxima of the seven rotated loadings at the
given station. The majority of stations exhibits nearly 0.7 loading and can be related to one of
the seven regions, even if they do not fall into the core of the regions, delimited by the 0.8
loading isolines.

Answer to the fourth question is found in the explained communality, which orders a
number to every stations reflecting the proportion of variance statistically explained by linear
combination of the retained factors and loadings. If the communality is not close to 1, we
establish high proportion of individual variance. For this reason, Ullung Island will be excluded
from the country-wide classification of the patterns (Fig 3b), since only 38 % of its variance
is related to the common information represented by the factors. Cheju Island is worth keeping
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since the communality is equal or higher here than in the internal part of the peninsula, which
might be due to the three stations located on that island.

4.2 Alternative results of cluster analysis

As already mentioned in Section 3.2, function of the between-cluster distance on the
decreasing number of clusters does not yield any break, but it represents a smoothly increasing
dissimilarity. Figure 5 indicates the behavior of the distances for the last 30 steps in autumn.
In its upper module, “Rule 1”indicates the 6 rotated loadings and “95 %"reflects the case of
17 loadings, as bases of the clustering (compare with Table 1). Naturally, the more detailed
representation of the diurnal patterns is somewhat more difficult to compress into a fixed
number of classes, which is valid also in case of the overall distance (one joint class, ie. no
clustering), too.

In case of the relative classification (pattern correlation, Furthest Neighbors, see lower
panel of Fig. 4), however, there are some brakes in the index, which allow to select a natural
termination of clustering. This implies that most likely the continuum of the area-mean
precipitation is the main reason of the smooth behavior in the Euclidean distance-based way of
clustering.

According to the methodology, described in Section 3.2, number of clusters and the
relative variances of the four candidates and the final selection are comprehended in Table 2.
Note that they are related to the wet clusters and cases, without inclusion of the dry days (i.e.
cases and clusters characterized by no measurable precipitation at any of the 59 stations).
Figures of the Table can be interpreted, as follows:

i) Number of clusters when not any single, non-clustered case remains is rather large and
it were difficult to interpret why we had more clusters in spring (29) than in summer (25),
also, much more in the transition seasons than in winter. Hence, this candidate should be
rejected.

ii) Number and seasonal distribution of the N ;,>5 candidate is fairly reasonable and
the relative variances are also convincing. Hence, this candidate is worth considering, although
the number of clusters is still high.

iti) The N ,,=>1% candidate for clustering is already characterized by convenient
numbers of clusters, but the relative variances are not attractive. Especially the summer and
autumn values are too big, larger than 50 %.

iv) As concerns the last stage before N .,>5 %, its number of wet clusters is very

practical (3-6 clusters), but the unexplained variance is even higher, than in the previous case.
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Hence, although there might be applications, especially, if related to short samples, when the
low number of classes are more important than the reduction of variance, it is difficult to
recommend a classification for general use, that leaves higher portion of variance unresolved,
than explained.

So, there is only one reasonable candidate, the N ,;,,>5 one, which can be further
polished to some extent. It is performed by a systematic search for lower numbers of clusters,
where the explained variance is equal or higher. One should note, again, that it is not
principally excluded, since the monotonous increase of the distance function parallel to
decreasing number of clusters is strictly related only to the reduced number of loadings, not to
the original patterns. But, as expected, we found only two possibilities to improve the
pre-selected candidates, since the loadings provided fair representation of the patterns. In both
cases the number of clusters decreased by one and the efficiency could even be improved by

one percent.
4.3 The final classification

The final classification exhibits 14+1; 15+1; 24+1 and 15+1 clusters, in the above-defined
winter, spring, summer and autumn periods, respectively. (The+l cluster indicates the totally
dry days with no measurable precipitation at any station.) The cases (days) are distributed very
unevenly among the classes, as demonstrated in Figure 5. (This figure shows the wet days
only.) Having the clusters sorted according to their area-mean precipitation in an increasing
order, the frequency of clusters exhibits nearly the opposite distribution. The most frequent wet
clusters are characterized by very low amounts of are-mean precipitation in each season.
Together with the dry days, the two clusters represent 68, 60, 41 and 66 % of all cases of the
seasons starting from winter to autumn, in the above given sequence. In another comparison,
the dry days represent 28.4 % of the 24 years, whereas the largest wet clusters cover 302 %
of that.

In each season there are some clusters with relatively large area-mean precipitation, but
their frequency is not high, except for the summer season. The importance of cluster analysis
is demonstrated by these high-precipitation clusters: Despite their low general frequency,
claiming for equalization by amalgamation into one cluster, strong internal differences of the
patterns belonging to one or the other cluster do not allow this unification. In many relations
the pattern correlation between the cluster centers is strongly negative. Hence, they should be
kept separately.

There is no place to present all the 67 wet clusters, hence we limit ourselves to illustrate
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the big differences among the clusters. Each season is represented by 4 clusters in Figure 6,
according to the following selection: Besides the clusters with the two lowest and the two
highest area-mean cluster centers, two other pairs are selected from the middle of the
distributions, characterized by strongly negative pattern-correlation, but similar area mean values.
The four corresponding pairs are positioned beneath each other with an increasing order of
cluster centers, from the left to the right. So, differences of the clusters are recommended to
consider mainly betweenthe upper and lower figures, within a given season. The cluster-centers
exhibit fairly small-scale patterns of precipitation maxima, which might, however, be related to
one or few extreme events, especially in case of small clusters. (See the number of clusters in
the headings).

Main statistical characteristics of the final classification are presented in Table 3,
incorporating the dry days, as well. Comparing frequencies of the dry cluster to the most
frequent wet cluster, the latter ones exhibit higherpercentages in winter and summer, but they
appear more rarely in the transition seasons. Size of the smallest clusters is always between 5
and 9 members.

The relative variance, explained by the clustering becomes slightly better if we include the
dry days into the analysis. Average performance of the classification is as good as 37 %, with
better capability in winter and spring (31 and 34 %), but weaker than average in summer and
autumnn (41and 40 %). In other words this means that the classification is able to explain the
complementary part of variance, i.e. 63 % in average (59-69 % in seasonal extremes).

Speaking more practically, if having been informed about the prevailing cluster in a given
day, one substitutes the actual precipitation pattern by the cluster centers, the average squared
error of estimation is only 37 (3141) % of the initial uncertainty, determined just by the
knowledge of climatic mean patterns. Relying at a distant analogy, the case of linear
regression, in that case similar reduction of uncertainty is achieved by 0.79 (0.770.83)
correlation coefficients. :

Applying weighted relative variances, i.e. dividing the squared deviations by the cluster
centers (see Section 3.2), we obtain even better figures. This weighted average uncertainty is
only 22 % of the unclassified one with a variation between 17 % (autumn) and 27 %
(summer).

The last paragraphs demonstrate fairly encouraging numbers, derived from point-wise
validation of clustering, which represent spatially averaged gain of information in Korea. To
demonstrate information about the spatial variability of performance, we recommend the Figure
7, representing frequency distribution of the remained relative (non-weighted) variance among
the 59 stations. The distributions are positively skewed in summer and autumn, ie. there exist
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a few stations with poorly explained precipitation, but the majority of them belongs to even
lower non-explained variance, than the average numbers of Table 3. The two other seasons are
more symmetrical and even the worst stations exhibit slightly above 50 % of non-explained
variance.

The standard deviation of the relative variance is only 7-8 % around the mean. So, one
can conclude that the cluster analysis, represented by fairly low average percentages of
non-explained variances, can also be applied for a small sub-set of stations (including
individual ones) with substantial reduction of variance, even in the worst possible cases.

Acknowledgements : This paper was performed for the Korea Enhanced Observing Period
(KEOP) Project, one of the Principal Projects of Meteorological Research Institute (METRI),
KMA.
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Figure 7. Frequency distribution of the non-explained relative variance among the 59 stations. (Normal
distribution is graphically fitted.)
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Table 1. Retained original and rotated % eigenvalues of seasonal factor analysis
Winter Spring Summer Autumn
Sample size 1508 days 1402 days 1952 days 1406days
Area mean 1.52 mm 4.74 mm 8.56 mm 2.51mm
Explained variance | Original | Rotated | Original | Rotated | Original | Rotated | Original | Rotated
1. factor 64 41 67 29 39 15 59 25
2. factor 12 22 9 22 17 15 10 20
3. factor 5 12 5 19 7 14 7 16
4. factor 4 7 4 9 6 14 5 12
5. factor 2 5 2 5 5 11 3 11
6. factor 2 4 9 4 2 2
7. factor 2 6
8. factor 2 2
>, indicated 87.3 89.0 81.0 86.4
95 % expl. 14 15 30 17

Table 2. Alternative of the final classification with the mean relative variance expressed in the non-dry
(N-1 cluster) days.

ril:lt)z > | member > 5 members Final selection >1% bg;::g?;;,
Wet Expl. Wet Expl. Wet Expl. Wet Expl. Wet Expl.
Clsuters | Var. % | Clsuters | Var. % | Clsuters | Var., % | Clsuters | Var. % | Clsuters | Var. %
Winter 14 . 14 32 14 32 9 39 4 51
Spring 29 16 37 15 36 10 43 5 48
Summer 25 25 43 24 42 12 54 6 63
Autumn 24 15 42 15 42 7 57 3 64

Table 3. Main statistical characteristics of the classification. Normalized variance means the proportion of
variance to the average, both within a cluster and the whole sample.

All days of No. of wet Mean Normalized
Wet da Dry d
season ot cays s days in cluster| variance(%) | variance(%)
Winter
(15 clusters) 2160 1508 652 9-825 31 20
Spring 2208 1402 806 5524 34 25
(16 clusters)
Summer
25 clusters) 2208 1952 256 8-640 41 27
Autumn
(16 clusters) 2184 1406 778 5-653 40 17
Average 37 22
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