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Abstract

In this paper we present a new family of distributions that allows a continuous
variation not only from normality to non-normality but also from unimodality to bimodality.
Its properties are especially useful in studying and making inferences about models
involving the univariate truncated normal distribution. The properties of the family and its

applications are given.
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1. Introduction

A random variable X has a singly truncated normal distribution if its probability density
function is

o '6((x—w)/0) [1— O((A—p)/ 0], A<z, M

where A is the lower truncation point; ¢(-) and @(-) denote the p.df and d.f of the
MQO,1) variable, respectively; the degree of truncation is @((A—)/o) from below. When
A=y, (1) is actually the distribution of x+o¢|U| where U is the A(Q,1) variable. It is
noted that x4 o |U| variable is closely related to the so called skew-normal distribution:
Azzalini (1985) and Henze (1986) worked on the distribution, a family of distributions
including the standard normal, but with an extra parameter to regulate skewness. For
independent standard normal variables, / and V, a random variable

_ g 1
z ?1+02’U|+?1+02V @
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is said to be skew-normal with parameter 4, written Z~ SM(6), where the parameter ¢ which
regulates the skewness varies in (—oo, 00). Thus, =0 corresponds to the N(0,1) variable
and fixed V comesponds to the singly truncated normal. We refer Amold et al. (1993),
Azzalini and Valle (1996) and Chen, Dey and Shao (1999), Kim (2001) for the applications of
the distribution.

Present paper discusses, in detail, some properties of the singly truncated normal
distributions. The properties are mainly about expectations of some functions of the truncated
normal variable X with distribution (1) (see, Nakamura 1980 and Sugjura and Gomi 1985, for
the usual moments of X). They are obtained from utilizing the normalizing constant of a
family of distributions which includes SM6) as a special case. This gives rich properties of
the truncated normal distribution that allow various inference about the truncated normal
population having the distribution (1). Moreover, such results are potentially relevant for
practical applications, since in data analysis there are a few parametric models available to
dealing with truncated data, especially for the problem of fitting truncated data. A particular
application is that the results can be used to define a broad class of binary linear regression
models on the provision that a link function in a generalized linear model can be either

asymmetric or symmetric.
2. The Family of Distributions

This section derives a new family of distributions that is useful for studying the properties
of expectation of O(X)=@(8|U |+ k), a function of X with density (1), and that of its

variants.

Proposition 1. Let Z, and Z, be independent variables having respective p.df’s %,(z,)
and %,(z;), and let 7(3),y=R, be an arbitrary continuous function. Then the distribution of
Z=Z, | Z,X T(Z)), ie. the conditional distribution of Z, given Z,< 7(Z), is

fA2)= Ch(2) Hy( T(2)), — 00 2{ o, 3)
where H,(-) is the df of Z; and C~!= f_mmhl(z)Hz( Nz,))dz,.

Proof. By Bayes’ formula

FAz) =Pr(Z,<z| Z,<T(Z))
2 =) o Nzy)
=@ [ mzokleddel [ _dey [z k(o).
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Differentiating F ,(z) with respect to z, we obtain

4D =hy(2) f_YLZ)hz(zz)dzz[ [" me f_tz')hz(zz)dzzdzl] B

Proposition 1 implies that the random variable with density (3) can be generated by the
following acceptance-rejection technique. Independently sample Z, and Z, from #,(y) and

hy(y). f Z,< T(Z,) then put Z=Z,. Otherwise restart sampling a new pair of variables Z,
and Z, until the inequality satisfied.

Using Proposition 1, we can define various distributions. Some of them are as follows:

Note 1. For 1(Z)=6Z,, —o<f<oo, if Z and Z, are iid random variables
symmetric about zero, then the normalizing constant of (3) is C=2, because
P Z,<(0Z)=1/2 for — ool g0,

For example, when Z, and Z, are independent M(0,1) variables and 7(Z,) is equal to
0Z,, —ool <o, it is straightforward to see, from Henze (1986) that, the distribution of Z is
SM6), and its density function is

F1(z 0 =2¢(2)P(02), — 00 2{ o,

For another example, if Z, and Z, are independent ¢, variables and TY(Z,)=46Z,.
Then, for — o< g< oo, the distribution of Z=Z2,/Z,<6Z, is

fz(Z; 49) =2f(y)(Z)F(,,)(9Z), — 00{ Z<°°,
where f(,(-) and F,(-) are p.df and df. of ¢, variable, respectively.

Note 2. If Z, and Z, are independent variables with respective p.df’s %,(z;) and
h(z,). Then the normalizing constant C~'=E,[H,(T(Z))].

For example, if Z,~M0,1) and Z,~1X0,1) are independent random variables and
T(Z,)=6Z%, then

f3(z ) =2%(2), — o< z{ 0,

independent of 6, because H,(0Z})=6zZ} for —co(#<o, and hence the normalizing
constant is C~!=FE ,[6Z2]=6.
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For another example, if Z,~M0,1) and Z,~1X0,1) are independent random variables
and T(Z))=46 |Z,, then

fi(z0) =7‘/—% |z |¢(2), — o0 2{0,

independent of 4, because H,(4|Z,))=6Z, for —oo(f<, and hence the normalizing
constant lS C Tl Ezl[e Ile] =\/_20/\/—7f
Shapes of example densities are given in Figure 1.

Note 3. When Zz, and Z, are independent ¢ variables with respective degrees of freedom
v, and v,, then, for 7(Z,)= 67, the distribution of Z is the skew- ¢ distributions introduced
by Branco and Dey (2001) and Kim (2002); The skewed-Pearson type II -distribution by
Branco and Dey (2001) also has the density of form (3), if we assume that Z, and Z, are

independent Pearson type II variables with appropriate parameters.

The family {f; 7(y),y=R} defined by (3) denotes a family of conditional densities. As

seen in the above examples and Figure 1 below, the interest in the family comes from two
directions. On theoretical side, it emjoys a number of formal properties which reproduce or
resemble both symmetric and skewed distributions. From applied viewpoint, the family leads to

o\1 }

-4 -‘2 0 é 4
Figure 1. Shapes of example densities: (a) f,(z 8=2); (b) f,(%0=2, v=5);
©) f(z0=2); @ f,(%6=2).
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skewed and possibly heavy-tailed distributions so that it is suitable for analysis of data
exhibiting a unimodal empirical distribution but with some skewness present, a situation often
occurring in practical problems. Furthermore, the family also leads to bimodal distributions that
can be used for analysis of data having a bimodal empirical distribution.

3. Moments of Functions of Standard Normal Variable

When Z, and Z, are independent NMN(0,1) variables, the family of distributions
{f5 T(y),y €R} defined by (3) is useful for studying yet another properties of random
functions of MN(0,1) variable. The properties are as follows.

Proposition 2. If U is a M0, 1) random variable, then

E00|U|+B]= 0N 1+62)+2Gk/IN 1+ 62, 6) @

for any real ¢ and %, where G(a,b) is the function studied by Owen (1956) which gives the
integral of the standard normal bivariate density over region bounded by lines x=a, y=0,
and y=bx in the (x,y) plane.

Proof. Let V~N(0,1) independently of (. Then

Ox+k

Hoau+nl =+ [ [
=E [ pA{ V<x+ klx)]

_ a2 .2
e ”/Zdv]e * Ry

=pryu(V—01U|<k

For computing the last probability, we use of the distribution defined by (2) so that
Z=(V—-01U NV 1+6*~SM ~ 0), a skew-normal random variable with parameter- 6. Using
the distribution function of W by Azzalini (1985), we see that the last probability is equivalent
0 p(Z<kiV1+6%) = 0N 1+67) +2GGkiV 1+ 62, 0).

A computer routine which evaluates G(q,b) has been given by Young and Minder
(1974).

Corollary 1. If U is a A0, 1) random variable, then

ELO(OU+ k)] = O(k/V 1+62). 5)
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Proof. The proof is immediate if we change |{] with U in the above proof.
Proposition 2 and Corollary 1 give following properties.

Property 1. For U~M0,1) and —oo(f o0, E[D(OIUN]=prtyy<6)=1/2
+(tan ~'8 )/, because G(0, ) =(tan ~'4 )/2x. Thus

Eo{o(U )~ (U )] =(tan "'6 )/x.
Note that E{ @(|U |)]=3/4. This gives E{o({U [)— &(U )]=1/4.
Property 2. For U~MQ, 1), the moment generating function of X=o¢ |U |+ is
Mix(8) =2¢** @ of) for — oo( i co.
Hence, after some algebra, we obtain E{ X]= u+ o(2/7) 2 and W(X) = A (x—2)/n.
Proposition 3. If U is a MO0, 1) random variable, then for §>0,

ELO(6U+k D]=1~2G(£V 1+ 6%,1/6) 6
Proof. Let %= 9%, then for 6>0,

B0+ ] = [ 4006+ O)dy+ [, 4106~ ). ©

Let L(a,B,0)=p1(X\>a,X,>B for bi-variate standard normal variables X, and X,
with correlation coefficient o. Putting fy+ 6= (py—a)/V 1~ p?%, we see that the right hand
side of the equation (7) is equal to

by i Gy 9
K=y v Viter ) T X e b Vitar

Using the relation between L(-) and ¢(-) and G( - ) functions, we have at once the
result (see Sowden and Ashford 1967).
Proposition 3 and Corollary 1 give following properties.

Property 3. For U~N(0,1), and — coC k{0,
ELO(U+E )] =1-2CGk/V2,1) =1~ O(k/NZ)D(— k/V2).

Property 4. For U~N(0,1),
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p{|U<2)=20(2) —1.
Property 5. For Y~Mg,0%),

ELO(IY) —0(N]=1—{2G(u/V 1+ &, 1/0) + O(u/V 1+ o))}

4. Applications

As seen in section 2, the family of distributions {fy; 7(y), ye R} defined by (3) includes
various new unimodal and bimodal distributions yet to be studied In this section the
distribution are applied to a generalized regression model. Moreover, some result in section 3
are applied to certain statistical techniques.

4.1. Application to a Functional Binary Regression Model

In this section, we consider a functional modelling of a generalized regression model. We
restrict our attention to, for simplicity, a single explanatory variable, although similar ideas can
be applied to multiple explanatory variables. Let Y=(y, ---,y,)" denote an #x1 vector of #
independent dichotomous random variables. Also, let x(1,x)’, be a 2x1 vector of
covariates, and B=(4,,8,)’ is a 2x]1 vector of regression coefficients. Assume that y,=1
with probability »; and y;=0 with probability 1—p, In a traditional dichotomous quantal
response model, it is usually assumed that

pi=F(x' f), ®)

where F(-) denotes a cdf and F! is typically called a link function in a generalized
linear model setup. When F is a c.df of symmetric distribution, the resulting link is
symmetric. The most common symmetric links include the probit, logit, and ¢ links which are
the members of {f; T(y),y=R}. Of course, as seen in figure 1, an asymmetric link can be
obtained by taking an asymmetric distribution in {f5; 7(y),y=R}. The complementary log-log
link is an example of an asymmetric link. See Stukel (1988), Chen, Dey and Shao (1999), and
Kim (2002) for the other classes of asymmetric links.

In this section we propose an alternative link model for dichotomous quantal response
model. Specifically, our model considers a binary regression model with error in the
explanatory variable. The model is motivated by a functional regression model studied by Kim
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(2002) and Carroll et al. (1995), where the explanatory variable observations are considered to
be realizations from a random variable.

Let W= (w,,w,)’ be a vector of latent variables. Then, utilizing a latent variable
approach of Albert and Chip (1993), our proposed functional binary regression model is
formulated as

= it s ©

where
wi=Pp+xhyte, e~H, (10)

and

X,‘—_-x,"*' 0@,’, e,-~H2,

where ¢; and e, are independent with cdfs H, and H,, respectively, and the explanatory
variables are subject to independent measurement error, with only X, being observed.

An immediate example of the error structure in the explanatory variable is radiance
measurements from satellite-borne infrared sensors. It is apparent that measurement errors occur
in true radiance readings, because the measurements are severely distorted by the presence of
clouds in the fields of view of the sensors (see, DePrist 1983 and Azzalini and valle 1996 for
other examples).

As was assumed if errors in explanatory variables are known to present in terms of the
functional form, then the most appropriate modelling and fitting procedure will take account of
the full error structure. In what follows we reparameterize the model (10) in terms of g, A,

W=+ Xt sete, e~H, e~H,. (1n

If H, is the cdf of a symmetric distribution, (10) and (11) give the functional binary

response model
I)i: pr(y,»= 1) = f_a;Hl(Bl + ﬁzXf*’ 6e,~)h2(ei)de,~ = Ee,»[Hl (/31 + BQX,"*' 6@,-)]. (12)

Let Dyo={yv, X;: i=1, '-;,n} denote the observed data. Then, from (11), the likelihood
function for the model is given by '

L(ﬂl.ﬁzaDabs)z Hl f_mm[Hl(lg1+/5’in+ 59{)]yi[1—H1(/91+32Xi+ 56,‘)] l_yihz(ei)dei-
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(9) and (11) defines a rich class of symmetric and asymmetric link models. For example,
suppose ¢; and e, in (11) are independent N(0,1) variables in (10), we see that Corollary 1

leads to
pi=pr(y;=1)= 0((B,+XB)/V 1+ 69,

a usual symmetric probit model with scale change in the regression coefficients.
For another example, when &,~M0,1) and e;=|U; | in (10) are independent variables ,

where Ul-~N(0,1): Then Proposition 2 gives

pi=EQU 14+ B8+ X811 = 0((B1+ XB)IN 1+ 8D +2G((B, + X:8,)/V 1+ 62, 9),

a asymmetric link model, so called skew-normal link model which was derived by Chen, Dey,
and Chao (1999).

Last example is the skew- ¢ link model by Kim (2002). It is derived when the c.df’s
(H, H,)=Q, where

Q={(H H,) : e~N0,A7Y, e ~N0,4), A~I(v/2,2/v) with E[A]1=1}.

Analysis of those example models are well developed in the referred references, and hence
it is omitted here.

4.2. Application to p-Expectation Tolerance Intervals

A B-expectation tolerance interval for the normal distribution is a random interval which
» includes, on the average, a proportion A of the normal population (see Zacks 1971, pp. 516).
The interval may be of the form (—o,7, ], or [I; 00) or [I,I;]. In the case of an
interval of the form (—oo, 7, ] for a My, o?) distribution, for example, a statistic I, is
requited such that E{ @((Iy—p)/0)]=p in the unknown parameter(s). Corollary 1 and
Proposition 3 are used below to derive the statistic 7, in (—oo, ;] for the case of unknown
p and o known. p-expectation tolerance intervals of form [7,, ), or [Iy 1] are easily

obtained from the results given for the intervals of the form (—oo,1,].

Example 1. p-Expectation Tolerance Interval of . under the distribution of X : Given
an observation x on X~M,o%/n), a statistic I,{x, o) is required such that
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Ho-UXa=s) g
If I,{x,0)=ax+b, then it is required that, by Corollary 1,

A= ¢(Kﬁ)_E{0(aﬁ)(7'b_n_£)] @( {(al_il_)#2+ b} )

Equating of coefficients in

Ko.= Val(a—1Du+b
# oV 1+a?

immediately yields ¢=1 and b= oV 2/nK,.

Example 2. p-Expectation Tolerance Interval of . under the distribution of |X | : Given
an observation x on X~Mg,0%/n), a statistic I,(x, o) is required such that, under the
distribution | X |,

S T T R

If I(x,0)=ax+b, then it is required that

5= E[2¢( aX+b )_1]=1_4G(\/_n{(a—l)u+b}’1/a>

o' 1+a°
by Properties 3 and property 4. Putting ¢=1, we have, by prooerty 3,
B=1-20(K;)(—K}), €)
where K} = b/ {oV'2/n} and the value of K} can easily obtained by solving(13).
Equating of coefficients in K, immediately yields a=1 and b= oV 2/2K}.

5. Concluding Remark

This paper has proposed a new family of distributions, denoted by {f; 7(3),v=R}. It is
a parametric class of probability distributions came from Z=72, | Z,< 7{Z,), where Z, and
Z, are independent continuous random variables and have respective p.dfs #,(z,) and
hy(z;). The special feature of the family is that it gives a rich family of parametric density
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functions that allow a continuous variation from normality to non-normality. Therefore the
family of distributions is potentially relevant for practical applications, especially for the
analysis of skewed data and bimodal data. Immediate applications of the distribution can be
illustrated as follows: (i) Binary regression with an asymmetric link function; (ii) tolerance
interval estimation under normal or truncated normal distribution; (iii) regression analysis with
measurement errors in explanatory variables. A study pertaining to the applications is an
interesting research topic and it is left as a future study of interest.
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