(구두-13) ## Effects of ginsenoside Rg_2 and ginsenoside metabolites on human 5- HT_{3A} receptor-mediated ion current in Xenopus oocytes LEE Byung-Hwan, JUNG Sang-Min, LEE Jun-Ho, KIM Dong-Hyun¹, KIM Jong-Hoon, KIM Jai-Il², LEE Sang-Mok and NAH Seung-Yeol* Research Laboratory for the Study of Ginseng Signal Transduction and Dept. of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 143-701. ¹College of Pharmacy, KyungHee university, Seoul Korea. ²Life Science, Kwnangju Institute of Science and Technology, Kwangju 500-712, Korea. *Corresponding Author: synah@konkuk.ac.kr Ginsenosides, ingredients of Panax ginseng, that exhibit various pharmacological and physiological actions. Recent reports showed that ginsenoside Rg_2 inhibits nicotinic acetylcholine receptor-mediated Na^+ influx and -channel activity. In the present study, we investigated the effect of ginsenoside Rg_2 and ginsenoside metabolites(CK and M4) on human 5-hydroxytryptamine_{3A}(5-H Γ_{3A}) receptor channel activity, which is ligand gated ion channel. 5-H Γ_{3A} receptor was expressed in Xenopus oocytes, and the current was measured using two-electrode voltage clamp technique. Treatment of ginsenoside Rg_2 , CK and M4 itselves had no effect in oocytes injected with H₂O and 5-H Γ_{3A} receptor cRNA. In oocytes injected with 5-H Γ_{3A} receptor cRNA, pretreatment of ginsenoside Rg_2 , CK and M4 inhibited 5-H Γ -induced inward peak current (I_{5+IIT}). The inhibitory effect of ginsenoside Rg_2 , CK and M4 on I_{5+IIT} was dose dependent and reversible non-competitive and voltage-independent. The half-inhibitory concentrations (IC_{50}) of ginsenoside Rg_2 was 22.3 ± 4.6 mM, CK was 36.9 ±9.6 and M4 was 7.3 ±2.2. These results showed that ginsenosides as well as ginsenoside metabolites regulate 5-H Γ_{3A} receptor channel activity expressed in Xenopus oocytes. Address correspondence to: Dr. Seung-Yeol Nah, Research Laboratory for the Study of Ginseng Signal Transduction and Dept. of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 143-701 Korea. Tel: 02-450-4154; Fax: 02-450-2809; E-mail: synah@konkuk.ac.kr