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on the Variance Component in the Unbalanced Random

One-Way Model
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1 Introduction

Estimation of variance components has received a great deal of attention, particularly in the 50's
and 60’s. While papers on point estimation of variance components far outnumbered those dealing
with interval estimation, interest in the latter has picked up in the last 15 years. The book by
Burdick and Graybill (1992) is devoted in its entirety to the construction of a variety of confidence
intervals on variance components and functions thereof.

In this study, we present a novel approach for the comparison of confidence intervals on variance
components on the basis of their coverage probability. This approach uses generalized linear
maodels techniques to model the coverage probability as a function of particular control variables.
The proposed methodology is demonstrated using the random one-way model and four types of
confidence intervals on o2, the among-group variance component. One of the main advantages
of this modeling scheme is to provide a deeper insight into the combined effects of the degree of
imbalance of the associated design and the true values of the variance components on the coverage
probabilities of the confidence intervals. This is accomplished by examining contour plots of the
coverage probability that can be easily generated from the derived model for each of the four types

of confidence intervals.
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2

2 Confidence Intervals on o

Consider the one-way random model
Yij = P+ a; + €55, i=1,2,..,k, 7=12,..,n, (1)

where the a; and €;; are independently distributed as normal variates with zero means and variances

02 and o2, respectively. No exact confidence intervals on o2 exist. However, there are several

procedures for deriving approximate confidence intervals on g%. We consider four such procedures,

a brief description of which follows.

2.1 The modified large sample procedure

This procedure is based on applying a particular modification to the balanced confidence interval

on o2, that is, when n; = n for all . A full description of this technique is given in Burdick and

Graybill (1992, page 70). The corresponding approximate (1 — a)100% confidence interval on ol

is given by

1 1
o (MSa = MSp = vmn),

(MSq — MSg + \/7'_2)} , (2)

where MS, and MSg are the between-group and among-group mean squares, with v, = k -1,

and vp = n. — k degrees of freedom, respectively. In equation (2), no = -1 Ele n?),

no= Y5 n, m o= g2MS2 + h3MS% + 12M S MSg, 72 = h3MS2 + g3MSE + h1sMS Mk,
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2.2 The Thomas-Hultquist procedure

Thomas and Hultquist (1978) used the unweighted sum of squares for a;, namely, S5, = np, Zle (G-
7*)?, to obtain an approximate confidence interval on 02. Here, n), denotes the harmonic mean

- -1
of the ny’s, that is, np, = k [Zle ;1—] ) i, = ni, i1 Y, and g = %Ele 7;. 'This interval is
given by

[ss; — (k= )MSpFg k-1n -k SS4— (k= )MSEFi—g k-1 -k @)

2 ’ 2
PhXs k-1 MhXT—g k-1

2.3 The modified harmonic mean procedure

Khuri (1999) used an alternative value, denoted by n*, to ny in the Thomas-Hultquist procedure.

The new value is given by n* = m%\m, where Ay 2 Ay 2 - 2 A(k—1y are the ordered
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11 1
E’n_z""’n_k)’ and I, and Jy are

eigenvalues of the matrix (Ir — £Jx)K(Ix — £Jx), K = diag(

the identity matrix and matrix of ones, of orders k x k, respectively.

2.4 The Burdick and Eickman (1986) procedure

The interval based on this procedure is given by

SS; L SsyU @)
X%,kq(l"'nhL)’ X%_%,kq(l‘*'nhU) ’
where SS* and ny are the same as in Section 2.2, L = n».(k—l)MgrfI;’%,k_l,"__k - %, and U =

o - L - o
e -MBsF, g atm s e Here, n(;) and n) are the smallest and largest of the n;’s,

respectively.
We shall refer to the confidence intervals in Sections 2.1 — 2.4 as the M LS, TH, MHM, and

BE intervals, respectively.

3 Modeling the Coverage Probability

The coverage probability of any of the confidence intervals in Section 2 depends on the design,
D = {ny,ng, - ,nk}, and on the true values of 0% and o2. The degree of imbalance of D is
determined by a measure of imbalance given by ¢ = k—i%’ where % < ¢ <1 (see Ahrens and
Pincus, 1981). A small value of ¢ indicates a high degree of imbalance. The value ¢ = 11is attained
when the data set is balanced. For a given value of k, there are many designs that can be generated
with specified values of n. and ¢. A method for generating such designs is given in Khuri (1996).
We refer to k, n. and ¢ as design parameters.

Let S be a specified region of interest for o2 and o2. For each generated design and selected
values of o2 and o? from S, four confidence intervals can be obtained as was described in Section
2. Let # denote an estimated value of the true coverage probability for & given confidence interval.
Such a value can be obtained by computer simulation. Our objective here is to develop an empirical
relationship between #, on one hand, and k, n., ¢, and p on the other hand, where /’:E??%?' In
such a relationship, # is treated as a response variable, and &, n., ¢, and p are considered as coﬁtrol
variables. Note that the specification of k, n. and ¢ does not uniquely determine the design D.
Several replications on # can therefore be generated for each assignment of the quadruple (&, n.,
#, p). These replications will be useful in the construction of the aforementioned relationship.

Given the nature of the response #, it would be appropriate to model # against k, n., ¢, and p

using generalized linear models techniques. Instead of dealing with # directly, let us consider the
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quantity wy, where

wAz(lirﬁ)/\,)\Zl. (5)

This transformation maps the interval [0,1) onto [0,00). The value of A is chosen in a manner
that facilitates the approximate identification of the distribution of wy using the #-replications
at the point (k, n., ¢, p). Let p,(x) denote the mean of the distribution of wy at the point
x = (21,%2,Z3,24)", Wwhere 1 = k, 22 = n., 3 = ¢, and z4 = p. Let g(-) be a chosen link function

such that n(x) = glu,(x)], where n(x) is an appropriately chosen linear predictor of the form

n(x) = f'(x)8. (6)

The right-hand side of (8) is a polynomial of a certain degree in the elements of x and 3 is a vector

of unknown parameters. An estimate of u,(x) is given by

fu(x) = g7 [f'(x)B), (7)

! is the inverse function of g, which is

where [3 is the maximum likelihood estimate of 3, and ¢~
assumed to be a strictly monotone function. The estimating equation (7) can then be used to
obtain an empirical relationship between 7 and the elements of x.

For model (1) with a design D = {n1,n2, - ,ny}, several combinations of levels of k, n., ¢, and
p are chosen according to a 3* factorial design. The chosen levels are k = 4,7, 10; n. = 50, 100, 500;
¢ = 0.30,0.65,0.95; p = 0.10,0.60,0.90. For each combination, several designs D are generated
using Khuri’s (1996) method, such that a total of 900 designs are used. Note that since the values

of both ¢ and p fall inside the unit interval (0, 1], k is replaced by a scaled value, namely, ks=k—gi,

and n. is replaced by a scaled value, namely, nsz%g—(‘;’g. This way, the ranges of ks and n, for the
selected values of k£ and n., respectively, are equal to one, which matches the ranges of ¢ and p.

For the chosen levels of ks, ns, ¢, and p, the region of interest is therefore of the form
S = {(ks,ns,as,p)’o <k <1,0<n <1, 3<¢< 95 1<p< .9}. ®)

Some of the generated designs are listed in Table 1 along with the actual value of ¢, ¢,, for an
(k,n., ¢)-generated design. For each design and a chosen value of p, the coverage probability of each
of the four confidence intervals in Section 2 is estimated by Monte-Carlo simulation. To estimate
the coverage probability, 10,000 y vectors are generated for each specification of D and p. The esti-
mated coverage probabilities, that is, values of 7, corresponding to the MLS, TH,MHM, and BE
intervals are also given in Table 1. We denote such values by 7, for m = MLS,TH,MHM, BE.

The estimated coverage probability at the point x = (kg,ng, @, p)' is denoted by 7, (x). The

values of #,, in Table 1 are used to obtain the corresponding values of wy in (5). To determine
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an appropriate value for A, we do the following: using the replications on #,, (and hence on wy)
at each combination of ks, ng,¢ and p from the 3% factorial design, the sample mean, @,, and
sample standard deviation, s,,, are obtained. Let us now determine if there is an approximate
linear relationship between @) and s, by fitting a simple linear regression model with no intercept
between ), and s,,, using several values of A for each method. A satisfactory linear relationship
was observed with A = 4 for all four methods (the R? values are 0.83 for M LS, 0.83 for TH, 0.82
for MHM, and 0.97 for BE). This suggests assuming a gamma distribution for the w4 random
variable (see McCullagh and Nelder, 1989, page 30; see also pp. 285-286). Let p.,(x) dencte the
predicted value of #,,(x) inside the region S in (8). Using the chosen gamma distribution for wg

along with a logarithmic link function, g, (x) is given by

= ! —, m=MLS,TH MHM,BE, (9)
1+ e:cp[— %f’(x)ﬁ]

where 3 is the maximum likelihood estimate of 3 in (6). It should be noted that the logarithmic link

Pm(x)

function was used here instead of the canonical link function for the gamma distribution, namely,
the reciprocal link. The latter produced infeasible results since some of the values of f,,(x) at
some points of the 3* factorial design did not fall inside the interval [0,1]. After examining the
scaled deviance values (and also scaled chi-squared values) for all possible nested models,a model
with three-factor interaction terms of k,¢p and n,¢p, together with second order terms of ¢? and
p?, was selected for all four methods.

Prediction of #,, using model (9) is restricted to the region .S in (8). Since there are several
replications on #,, at each quadruple (ks, ns, ¢, p), the maximum difference between the replicated
values of #,, and the corresponding predicted value p,, is used to check the adequacy of fit of the
model. These values along with those of g, for all four methods for designs with k = 7 are shown
in Table 2. For other designs with k = 4 and k = 10 along with Table 2, the maximum difference
values range from —0.031 to 0.067 for m = M LS; from —0.016 to 0.071 for m = TH, from —0.028
to 0.076 for m = M HM; and from —0.014 to 0.023 for m = BE. These values provides a good fit
to the coverage probability data.

Contour plots of pn,(x) for the MLS, TH, BE and M HAM methods for fixed values of k and
n. are made. For example, Figure 77 is those for the TH method. On the basis of these plots with
others, the following conclusions can be made.

Although no single method is best in all situations, the TH and M HM intervals perform well
for moderate to large ¢ and p values regardless of the sizes of k£ and n.. When both ¢ and p values
are small, the TH and M HM intervals become liberal in the sense that they produce smaller
coverage probabilities than the nominal value. In that case, the M LS interval is useful only if
both k and n. are small. The BE interval performs well, but only when ¢ and p values are large.

Other than that, the BE interval is too conservative. Therefore, we recommend using the TH or
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MHM intervals unless both ¢ and p values are small. When they are small and the design has

small k and n., the M LS interval is recommended.

4 Conclusion

The modeling of the coverage probability of a confidence interval on o2, and the subsequent
plotting of its predicted values provide an effective procedure for comparing designs as well as
different methods for constructing such an interval. The plots enable one to visualize the effects of
design and values of the variance components on the coverage probability of a particular confidence
interval without having to rely on cumbersome or lengthy tabulations of Monte Carlo simulations.
The plots can also be helpful in identifying conditions for improving the coverage probability within
a region of interest.

Although, in this article, emphasis has been placed on interval estimation of o2 for the one-way

random model, the proposed methodology can be easily extended to higher-order models.
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Table 1: Generated designs and the estimated coverage probabilities for the four confidence inter-

vals on ¢2 (nominal confidence coefficient is 0.95).

Design* Tm
(k, n ¢ p {n1,n2, - ,n0} ! IMLS TH BE MHM
( 4, 50,.30,.1) {1,46,1,2} 295] 948 .940 .983 .936
(4, 50,.30,.6) {1,2,1,46} 2951 .932 .952 .961 .951
(4, 50,.30,.9) {1,2,46,1} 295} .924 .953 .953 .952
( 4,100,.65,.1) {24, 18,54,4} 652|941 .946 973 .950
(4,100,.65,.6) {31, 12, 5, 52} 6521 .928 953 .953 .953
( 4,100,.65,.9) { 56,20, 11, 13 } 653|935 .949 .949 949
( 4,500,.95,.1) {81,127, 161, 131 } 9501 .050 .953 .953 .953
( 4,500,.95,.6) { 108, 173, 120, 99 } .950| .948 .950 .950 .950
( 4,500,.95,.9) {172, 97, 108, 123 } 950] .948 950 .950 .950
(7,50,.30,.1) {2,1,32,12,1,1, 1} 304 .938 934 .990 .913
(7, 50,.30,.6) {3,6,2,34,2,2, 1} 294|899 .954 .967 .958
(7,50,.30,.9) {4,33,1,1,9,1,1} 3001 .848 .950 .950 .949
( 7,100,.65,.1) {4, 28, 20, 14, 2, 4, 28} 649|933 .932 981 .929
( 7,100,.65,.6) {18, 1, 14, 34, 4, 21, 8} 650{ .910 .949 .962 .953
( 7,100,.65,.9) {21,8,1,31,21, 17, 1} 650 .891 .950 .950 .951
( 7,500,.95,.1) { 79, 64, 50, 81, 101, 53, 72} 950|944 .947 948 .947
( 7,500,.95,.6) { 40, 76, 67, 90, 90, 60, 77} 950| .946 .951 .951 .951
( 7,500,.95,.9) { 56, 100, 86, 64, 74, 72, 48} 950| .947 .953 .953 .953
(10, 50,.30,.1) {1,1,27,1,2,1,4,7,1, 5} 302|.936 .929 .994 .916
(10, 50,.30,.6) {12,1,2,1,1,2,2,26,2, 1} 298| .854 .952 .963 .950
(10, 50,.30,.9) {4,3,2,51,2,2,2,28,1} 293| .878 .951 .952 .952
(10,100,.65,.1) {4,3,3,15,9, 12, 8, 29, 7, 10} 650| .941 .944 .986 .944
(10,100,.65,.6) | {13, 17, 26, 3, 2, 10, 12, 1, 11,5}  |.650] .909 .948 .962 .951
(10,100,.65,.9) | {14, 1,6, 2, 20, 18, 5, 1, 18, 15}  |.651| .890 .946 .947 .947
(10,500,.95,.1) | { 55, 56, 33, 46, 41, 63, 39, 51, 73, 43} [ .950| .948 .951 .953 .951
(10,500,.95,.6) | { 30, 56, 66, 49, 46, 61, 32, 61, 54, 45} [ .950| .946 .950 .950 950
(10,500,.95,.9) | { 35, 30, 62, 70, 42, 50, 57, 54, 47, 53} | .950| .945 .949 .949 .949

* A total of 900 designs such that 210 designs for k = 4,
300 designs for k = 7 and 390 designs for k = 10 are generated.

t ¢a denotes the actual value of ¢ for a ¢-generated design.
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Table 2: The predicted coverage probability, §,,, m =MLS, TH, BE and MHM, and its maximum
difference(MD) from the estimated coverage probabilities, #,,, obtained by simulation when k = 7.

Method
k=17 MLS TH BE MHM
n, ¢ p | Purs | MD | pru | MD | ppg | MD | pmum | MD
50 .30 .1 .941 005 | .929 006 | .991 .004 .924 .015.
50 .30 .6 .903 .021 048 | -.006 | .967 .007 948 | -.009
50 .30 .9 880 .031 953 005 | .946 | -.008 .955 .007
50 .65 .1 941 | -.007 | .940 025 | .985 | -.004 .938 .035
50 .65 .6 922 014 | 949 | -.004 | .962 .010 950 | -.006
50 .65 .9 915 .024 | 950 | -.003 | .952 | -.002 951 | -.004
50 .95 .1 950 004 | .950 | -.006 | .971 .005 951 | -.007
50 .95 .6 .945 004 | .953 .005 | .951 | -.004 .054 .004
50 .95 .9 947 003 | .950 003 | .949 | -.002 950 .003
100 .30 .1 937 .011 930 020 | .990 .005 925 .020
100 .30 .6 .900 053 | .948 004 | .966 .012 .949 | -.006
100 .30 .9 879 050 | .953 006 | .946 | -.008 .954 .006
100 .65 .1 939 007 | .940 013 | .984 .003 .939 012
100 .65 .6 921 021 949 | -.004 | .961 .013 950 | -.005
100 .65 .9 915 023 | .950 .003 | .952 .005 951 | -.004
100 .95 .1 .950 006 | .950 .005 | .970 .012 951 | -.004
100 .95 .6 945 .004 | .953 .007 | .950 .005 .954 .008
100 .95 .9 947 003 | .950 | -.003 | .950 | -.003 950 { -.003
500 .30 .1 .899 026 | .937 | -.011 | .978 007 .938 017
500 .30 .6 877 .057 | .949 .004 | .955 .006 951 | -.003
500 .30 .9 871 062 { .952 .003 | .949 | -.005 .952 .003
500 .65 .1 922 013 | .943 .010 | .969 014 .943 .015
500 .65 .6 912 020 | 949 | -.004 | .954 .008 951 .004
500 .65 .9 913 020 | .949 | -.005 | .956 .009 949 | -.005
500 .95 .1 948 006 | .950 | -.005 | .953 .006 950 | -.005
500 .95 .6 945 | -.005 | .952 .005 | .945 | -.009 .953 .006
500 .95 .9 948 005 | .950 | -.005 | .954 .008 949 | -.005
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