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Abstract

Goodness of fit test statistics based on the information discrepancy have been shown
to perform very well (Vasicek 1976, Dudewicz and van der Meulen 1981, Chandra et al
1982, Gohkale 1983, Arizona and Ohta 1989, Ebrahimi et al 1992, etc). Although the
test is well defined for the non-censored case, censored case has not been discussed in the
literature. Therefore we consider a goodness of fit test based on the partial Kullback-
Leibler(KL) information with the type II censored data. We derive the partial KL
information of the null distribution function and a nonparametric distribution function,
and establish a goodness of fit test statistic. We consider the exponential and normal
distributions and made Monte Calro simulations to compare the test statistics with
some existing tests.

Key Words: Entropy difference, Maximum entropy distribution, Minimum discrimination
information loss estimation, Order statistics, Sample entropy.

1 Introduction

Suppose that a random variable X has a distribution function F(z;8), with a continuous
density function f(z;8). The differential entropy H(f) of the random variable is defined by
Shannon (1948) to be

A== [ f@)og @i 0

We denote 2y to be the moment class distributions, {f(z;8) : Er(T3(X)) = 0;,i =1,2,---,k}.
Then it is well-known that all of the well-known distribution are the maximum entropy (ME)
distributions in the appropriate moment class Qg (Soofi et al. 1995). The entropy difference
is defined to be

AH(f,9) = H(f) — H(g),
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which is nonnegative if f(z) and g(z) are in the same moment class and f(z) is the ME
distribution in the class. The Kullback-Leibler information is defined by Kullback-Leibler
(1951) as

= g(x)
KL(g,N)= [ ala)log fisa )
It is well known that KL(g, f) > 0 and the equality holds for f(z) = g(z). It is shown
in Soofi et al. (1995) that AH(f,g) = KL(g, f) if g(z) is the same moment class with
the ME distribution f(z). In the statistical test of goodness of fit, the entropy difference,
AH(f,g), and the KL information, K L(g, f), have drawn much attention because of their
nonnegativeness along with the Kolmogorov-Smirnov and Cramér-von Mises distances (Va-
sicek 1976, Dudewicz and van der Meulen 1981, Chandra et al 1982, Gohkale 1983, Arizona
and Ohta 1989, Ebrahimi et al 1992, etc).

Let X(1:n)s X(2m)s***» X(nin) b€ the order statistics of an independently identically dis-
tributed (i.i.d) sample of size n from f(z). Suppose that we are interested in a goodness of fit
test for an ME distribution fo(z; 6) with the type I right censored data X(1.n), X(2:n), s X(r:
for 7 < n. Thus we consider the censored KL information as

‘ (=)

KL fo:0)= [ gn(o)log P55z, 3)
—o0 fO(x)

In non-censored case, it is well known that the KL information KX L(gn, fo : o0) > 0, and the

equality holds for fo(z) = gn(z). However the censored KL information does not satisfy the

nonnegativity any more. So we consider for the first time the partial KL information as

C
* A\ T
KL (gurfo:0) = [ on(e)log 2Eds + Fole) = Gl @)
%) fO(ZE)

where dGy(z) = gn(z), dFo(z) = fo(z) and —co < ¢ < c0. We consider some well-known
distribution, and compare the performance of the test statistic with those of some existing
test statistics. We consider the exponential and normal null distribution.

2 Test Statistic

The nonparametric estimation of H(f) have been discussed by many authors including Va-
sicek (1976), Theil (1980), Dudewicz and van der Meulen (1987), Bowman (1992), Ebrahimi
et al (1994) and Park and Park (2003). Among these various entropy estimators, Vasicek’s
sample entropy has been most widely used in developing entropy-based statistical procedures
(Dudewicz and van der Meulen 1981, Gohkale 1983, Arizona and Ohta 1989, Ebrahimi et al
1992, etc). Vasicek (1976)’s estimator is then given by

n

1 n
H(n>m) = E ; {IOg 2_'77:; (x(i+m:n) - z(i—m:n)) }1 (5)
where the window width m is positive integer smaller than 7/2, Z(1.n),T(2m)s " L(nn)
denote the order statistics of the sample, and T(;.n) = Z(1:my for ¢ < 1 and Z(in) = Z(nin) for

1> .
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Suppose that we have only a part of sample Z(1.n), Z(2:n), " **» T(rn) and are interested
in a goodness of fit test Ho : f = fo(z;0) vs Ho : f # fo(z;0) where fo(x;0) is an ME
distributions. In the type II right censored sample Z(1.n), T(2:n)s***» T(rim) 0T T < T(rim), it

is difficult to establish a nonparametric distribution function for z > %(n.n). Although it
may be possible to establish a nonparametric distribution function for & > z(y.n), it is not
reasonable to consider the information discrepancy for & > x(y.n). To overcome this difficulty,
it is assumed that a nonparametric distribution function Gy to be Fy for £ > z(r.ny. Thus
the nonparametric density function can be obtained in view of Park and Park (2003) as

0 ifx <&
gn()={ " ey G <esbinni=lr (6)
fo(@) ifz>§&4

where & = (T(i—mmny + - +z(i+m_1;n))/2m, and Z(;n) = Ty fori <1 and T(in) = T(rn)
for i > r. For this nonparametric density function, the partial KL information can be
established as

KL* (g fo : ©) / " gu(e)log ?083 dz + Fo(c) - Gn(c)

§rt1
Al gn(m) lOg izg:; dr + F0(§r+1)

Thus the test statistic based on the partial KL information can be written as

n.

§rt1
T(mr) = —Hn,m,r)- / 9n(2) 108 fo(z; 0)da
3
+Fy(€r41;6) — % (8)

where the estimate — é’“ gn(z)log gn(z)dz as (1/n) 3.1 _,{log(n/2m)(T(iymn) —T(i-mm))}
and § is an estimator of §. It is natural to estimate 6 so that the partial KL information
is minimized where such an estimator is called the minimum discriminant information loss
(MDI) estimate (Soofi, 2000).

mpr = arg min KL (gn, fo : &r+1) 9

Under the null hypothesis, T'(n,m,r) will be close to 0.

3 Numerical Examples

3.1 Test for Exponentiality

Suppose that we are interested in a goodness of fit test for Ho : fo(;6) = exp(—z/8)/8 vs.
Hy : fo(z;0) # exp(—z/8)/6 where 0 is unknown. Then the partial KL information can be
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Table 1: Power estimate of 0.1 tests against of exponential distribution based on 10,000
simulations when n = 30,7 = 20

Types Alternative Tympr | TmLE Tp Z Z %%
Type 1 error Exp(1) 10.04 | 10.08 [ 9.10 | 10.33 | 9.65 | 9.73
Monotone Gamma(0.5) 22.83 | 25.66 | 29.03 | 58.36 | 53.85 | 49.88
decreasing Weibull(0.5) 45.92 | 51.03 | 56.31 | 82.21 | 79.10 | 74.47

hazard Weibull(0.8) 5.89 6.38 6.83 | 22.36 | 18.81 | 19.70
Chi-square(1) 23.34 | 26.10 | 29.44 | 58.50 | 53.64 | 49.89

Monotone Uniform 35.23 | 35.71 | 32.07 | 32.08 | 25.10 | 34.63
increasing Gamma(1.5) 40.17 | 40.41 | 37.75 | 19.78 | 18.06 | 27.81
hazard Gamma(2) 71.42 | 71.82 | 69.55 | 34.07 | 30.63 | 55.03
Weibull(2) 94.08 94.33 | 93.13 | 63.32 | 55.72 | 89.09

Chi-square 38.77 39.20 | 36.39 | 19.13 | 17.91 | 26.24

(3)

Chi-square(4) 72,22 | 72,74 | 70.64 | 34.38 | 30.59 | 55.86
Beta(1 and 2) 19.35 | 19.56 | 17.07 | 15.29 | 12.70 | 15.90
Beta(2 and 1) 99.45 | 99.48 | 99.29 | 88.74 | 81.43 | 99.55

None- Lognormal(0.6) 99.82 | 99.82 | 99.77 | 41.38 | 38.97 | 91.49
monotone Lognormal(1.0) 55.28 54.92 | 53.62 | 1244 | 14.84 | 22.63
hazard Lognormal(1.2) 26.77 | 26.60 | 26.53 | 13.37 | 14.76 | 13.79

Beta (0.5 and 1) | 16.65 17.56 | 18.01 | 36.03 | 37.28 | 28.35

written as

§r+1
KL*(gnva . 57‘-}-1) = /E gn(z) lOg gn((L‘)dCE

§rt1

r 1 T
+-logf+ 2 A 2gn()dz + Fo€r1) = —

where 8 need to be estimated with different methods, then we have the test statistics con-
sidered here are as follow.

1. Taypr(n,m,r) : Based on MDI estimator (éAIDI)
2. Trre(n,m,r) : Based on MLE estimator (OrrLe = (XCic1Z(in) + (0= )2 (rm))/7)

We made 10,000 Monte Carlo simulations for n = 30 to estimate the powers of our proposed
test statistic and the competing test statistics. The simulation results are summarized in
Table 1. We can see from the Tables that any test statistic does not beat others against
all alternatives, but it is notable that the proposed test statistic shows better powers than
the competing test statistics against the alternatives with monotone increasing hazard func-

tions(see also Park 2003).

3.2 Test for Normality

Suppose that we are interested in a goodness of fit test for Hy : fo(z; i, 0%) = exp(—(z —

1)?/20%)/(V2r02) vs. Ha : fa(z;p,0°) # exp(—(z — 1)*/20%)/(V2ra?) where § = (i, 0?)
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Table 2: Power estimate of 0.1 tests against of normal distribution based on 10,000 simula-
tions when n = 30,r = 20

Alternative I Trbi I TeLUE ] Tin ] Ton | T3n | W? rA* S
Type I error I 10.22 | 10.14 l 9.98 [ 8.98 I 8.68 | 10.71 | 10.60 r10.39

Tukey(1.5) 62.65 65.41 | 47.59 | 51.16 | 34.30 | 38.69 | 46.27 | 38.27
Tukey(3.0) 30.34 31.80 { 17.95 | 16.77 | 11.58 | 16.00 | 18.87 | 11.79
Tukey(5.0) 25.73 24.90 | 17.06 | 11.93 | 20.34 | 32.45 | 31.32 | 21.76
Uniform 55.71 58.32 | 41.25 | 43.31 | 28.36 | 33.77 | 40.14 | 31.26
Weibull(2.0) | 25.82 28.23 | 24.13 | 16.16 | 15.37 | 20.71 | 22.32 | 13.41
Exp(1.0) 85.14 87.98 | 83.50 | 83.60 | 71.26 | 71.83 | 78.46 | 72.31

is unknown. Then the partial KL information can be written as

Ert1 r
KL fo:6) = [ gale)lopgn(alda + & log VEro?
3

1 Er+t 2 T
+ / (@ — w)gn(z)dz + Fo(Ert1) — g

207 Jg,
where 6 need to be estimated with different methods, then we have the test statistics con-
sidered here are as follow.

1. Tarpr(n,m,r) : Based on MDI estimator (Zampr1,62%,p1)

2. Tgrye(n,m,r) : Based on BLUE estimator (ipLuE,6%.5)

We made 10,000 Monte Carlo simulations for n = 30 to estimate the powers of our proposed
test statistic and the competing test statistics. The simulation results are summarized in
Table 2. We can see from the Table that any test statistic does not beat others against all
alternatives, but it is notable that the proposed test statistic shows better powers except for
Tukey(5.0) distribution.
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