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An Optimal P-Service Policy for an M/G/1
Queueing System*

Jongho Baef Jongwoo Kim? Eui Yong Lee’

Abstract

We consider an M/G/1 queueing system under Py-service policy. As
soon as the workload exceeds threshold A > 0, the service rate is increased
from 1 to M > 1 and is kept until the system becomes empty. After
assigning several costs, we show that there exists a unique A minimizing
the long-run average cost per unit time.
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1 Introduction

Bae et al. [1] introduced a P}M-service policy for an M/G/1 queueing system.
Server starts to work with service rate 1 when a customer arrives. The arrival
process of the customers is a Poisson process of rate v > 0 and the service times
of customers are independent and identically distributed with distribution func-
tion G. The server increases his/her service rate to M > 1 instantaneously,
if the workload exceeds threshold A > 0, and keeps the service rate until the
system becomes empty. Otherwise, the server finishes the busy period with ser-
vice rate 1. The server restarts to work with service rate 1, if another customer
arrives. Bae et al. [1] studied the workload process and obtained the stationary
distribution of the workload process.

In this paper, we extended the earlier analysis by assigning costs related to

the service rate, idle period, and workload, and then seeking to minimize the
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long-run average cost by varying M. It is shown that there exists a unique M

which minimizes the long-run average cost per unit time.

2 Long-run average cost per unit time

Let {X(t),t > 0} be the workload process of M/G/1 queueing system with P}-
service policy. Note that the time epochs when the server starts to work form
embedded regeneration points of workload process. In this section, we calculate
the long-run average cost per unit time, after assigning the following four costs

to the system:

e h(M): the operating cost per unit time while the service rate being M,

M>1.
e g(M): the cost for increasing the service rate from 1 to M, M > 1.
e c;: the penalty per unit time while the server being empty.
e cp: the cost per unit time for the system holding a unit workload.

It is assumed that h and g are nonnegative, nondecreasing, and twice dif-
ferentiable convex function including linear functions. We also assume that
h(1) = g(1) = 0 and that neither h nor g is a constant function.

Let T be the length of a regeneration cycle in {X(t),t > 0}. Then, by the
renewal reward theorem(Ross [2], p.133), the long-run average cost per unit

time is given by
E[cost during T

E[T]
Note that T can be partitioned into three periods T, T3, and T3, where T3 is

the period of service rate 1, T of service rate M, and T3 the idle period. Hence,
1
E[T] = aE[T1] + BE[T2] + "

where « is the probability that there exists a period of service rate 1 and 3

of service rate M in a cycle of {X(t),t > 0}. By Bae et al. [1], a = G(A),
H () _ H'(\) +E[L]
g = VH(A))’ B[] = T/c:l(,\) (H(’\ ~HN fo ) and E[T»| = 5
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where H(z) = 3 oo Op"G*"(a:) p = vm, the traffic intensity, m = [;~ zdG(z),

Ge(z) = (1/m) fo (1 — G(u))du, the equilibrium distribution function of G, *n
is the n-fold recursive Stleltjes convolution with G° being Heaviside function,
and L is the first exceeding amount of starting level over A in a cycle of the
period of service rate M. Therefore,

E[T] = A+ﬁ]§-[—‘ia]pv

where A = aE[T1]+1 = (H(/\) H(/\)) fOA H(m)dx) , which is constant with
respect to M, and S, = A+ L. We assume M >pand M > 1.
The expected costs during a cycle are as follows:

h(M)
M — ?
E[cost for increasing the service rate during T] = Bg(M),

Eloperating cost during T = SE[T2]h(M) = BE[S,]

FE[penalty during idle period in T] = —
and

E[holding cost during T

= cy(aE[total work during T1] + BE[total work during T5]).
We can obtain average total works during Ty and T as follows:
E[total work during Ti]
yGl < / (e H/(A / wH(z)d ) ’
| B3] _ vE[S.E[S?)

AM —p)  2AAM -p)? "’

where S is the service time of the first customer after an idle period. Finally,

E[total work during Tp) =

we obtain C(M), the long-run average cost per unit time, as follows:

E[S,Jh(M) + (M — p){Bg(M) + cuBu(M) + c1/v + cnaB}
A(M - p) + BE[S,) ’

cony =2
for M > p, M > 1, where

B = Eftotal work during T1],
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and
u(M) = E[total work during 73).

3 Optimal fast service rate

We now show the uniqueness of the fast service rate which minimizes C(M).
By differentiating C(M) by M, we have

BE[S.|N (M)
(AM — p) + BE[S.])*’

C'(M) =

where

N {é%%:]—”)w}{fa[sa]h'mfw(M—p)(g'<M>+cHu'<M)>}

— AR(M) + B(g(M) + cxu(M)) + %’ +epaB.

We show N (M) is a strictly increasing function on M.

w0y = { A gh (ISR + 20 0) + (4 = p)g" (1)

+e (2u' (M) + (M - p)u’’ (M))}.
Recall that A”(M), ¢'(M), and ¢"(M) are nonnegative, and observe that

{(M =~ pyu(p)}”

_ vEISJELS?)
= Tor-pp T

2u' (M) + (M — p)u” (M)

Note that the sign of C'(M) is the same as that of N(M).
We investigate the sign of N(1) in case that M > 1 > p and that of
limps— o N(M) in case that M > p > 1. When M > 1> p,

v = {2 s Bls )+ - g 1)+ % 4 enos
E[S?)  vE[S? vBE(S,)E[S?]
o {A <2E[Sa] 1o )+ 2(1 = p)? }

which may assume positive or negative value. When M > p > 1,

Jm N(M) = BEISH () = Ah(p) + Blp) + ) + cuaB
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A : 2,1
HeH S pim (M = p)u (M)

+enf | Jim (M~ p)u' (M) +u(M))

= -0,

since
. U — T E[SZ]  vE[SJE[ST _
Jvth_.rr,l,+(M ~p)u'(M) = Alll—{x/])+ (_ 2 (M-p) ) -
and
vE[S, 2
Jim (M = o) () +u(M)) = i (—%) - oo

In order to see the sign of limps—,o, C'(M), notice that

_ BE[SJN(M)/(M - p)®

C'(M) = .
{A+ BE[So]/(M - p)}
Now,
NM) (M —p)h/ (M) - h{M) w(M) | u(M)
Gr-pf = AT (M- +”m{ﬂf—p+(M—pV}
cgAv' (M)  Ag'(M)
E[Sa] E[S.]
+ﬂh’(M)/E[Sa] +Bg(M) +cr/v+cnaB | Bg'(M)
(M - p)? M—p’

The last two terms of the right side of the above equation are nonnegative for
M > p, and limps—oo Ag'(M)/E[S,) > 0, since g is not constant. We have only
to show the limits of the first three terms as M goes to infinity are nonnegative
for the proof of limps_,eo C'(M) > 0. (M — p)h/(M) — h{M) is nondecreasing
function in M > p, since its derivative is (M — p)h”(M). Hence, it is bounded

or goes to infinity as M goes to infinity. If it is bounded,

i (M = p)R(M) — h(M)

=0
M- (Af - p)2 !

and if it goes to infinity as M, the above limit goes to infinity, by the L’hospital’s

law,
L (M = p)R(M) = (M) _
M—oo (M — p)? Moo 2
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Notice that

lim
M—oo

u' (M) w(M) \ _ - _VE[SJJE[S? _
(M—p+ (M—p)2> —ﬂ}—'oo< 2(M - p)? > =0

and

o E[S3] _ vEISJE[SY _
A}Enwu(M)—A}Enw(—Q(M_p)Z_ (M—p)3 )—O

Since limpr—oo C'(M) > 0, N(M) > 0 for M large enough even though
limas o4 N(M) = —o0 or N(1) < 0. Therefore, we have the following conclu-

sions:
e When M > 1> p,

- IfN(1)>0,C'(M)>0for all M > 1 and hence C(M) is minimized
at M =1.

— If N(1) < 0, there exists M* (M* > 1) such that C'(M) < 0 for
M < M* and C'(M) > 0 for M > M*. Therefore, there exists

unique M which minimizes C(M).

e When M > p > 1, there exists unique M* (M* > p) such that C(M) is

minimized at M = M*.

The M* is the solution of the equation N(M) = 0.
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