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Abstract

This presentation derives a distribution function of the terminal value and
running maximum of two-dimensional Brownian motion {X(¢) = (X1(¢), X2(2))', t > 0}.
One random variable of the joint distribution is the terminal time value of the
Brownian motion {X;(f), > 0}. The other random variable is the partial-time running
maximum of the Brownian motion {X3(¢), t > 0}. With this distribution function, this
presentation also derives an explicit pricing formula for a barrier option whose
monitoring period of the option starts at an arbitrary date and ends at another arbitrary
date before maturity.
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1. Introduction

Merton (1973) and Reiner and Rubinstein (1991) have developed pricing
formulas for standard barrier options. The word “standard” means that the
monitoring period is the entire option life. Heynen and Kat (1994b) derived pricing
formulas for barrier options whose monitoring periods are [0, ¢] or [z, 7] instead of the
entire option life, [0, 7). Heynen and Kat (1994a) derived pricing formulas for outside
barrier options whose monitoring period is [0, 7]. Bermin (1996) developed explicit
pricing formulas for outside barrier options with the monitoring period from time 0 to
time ¢ (¢t < 7).

This paper derives a distribution function of the terminal value and running
maximum of two-dimensional Brownian motion {(X;(¢), X2(f))’, ¢ > 0}. One random
variable of the joint distribution is the terminal time value of the Brownian motion
{Xi1(®), t > 0}. The other random variable is the partial-time running maximum of the
Brownian motion {X,(?), > 0}. With this distribution function, this paper also
derives an explicit pricing formula for a barrier options whose monitoring period of
the option starts at an arbitrary date and ends at another arbitrary date before maturity.
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2. Two-Dimensional Brownian Motion and its Distributions

Consider one-dimensional Brownian motion {X(7), 7> 0 } with drift p and
volatility parameter 6. Thus, X(7) has a normal distribution with mean xf and
variance ¢’t . Let

M(s, £) = max{X(7),s <7<t} 2.1)

be the maximum of the Brownian motion between time s and time . For 0 <s<¢<T,
the joint probability distribution function of X(7) and M(s, ?) is

Pr(X(T) £ x, M(s, t) < m)
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which can be shown in Lee (2002). Here, ®3( ) denotes a trivariate standard normal
distribution function.

Next, let us consider a two-dimensional Brownian motion {X(?) = (X\(?), X2(9))'}
with drift vector (s, &), X{0) = 0 and diffusion matrix equal to

2
( g, pglaz]
, |-
pPO\C, O,

My(s, t) = max{Xy(7), s <7<t} (2.3)

ForO0<s<t, let

be the maximum of the Brownian motion {X5(7), 0 < 7 }between time s and time ¢. In

Section 3, we shall prove that for 0 <s <t < T, the joint distribution function of Mx(s,
t) and X1(7) is

Pr(X1(7) £ x, My(s, £) < m)
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If 41y = 1, 01= o and p = 1, then the random vector (Xi(7), Ma(s, t)) has the same
distribution as the random vector (X((7T), M (s, £)).
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3. Proof of (2.33)

Let us derive the joint distribution function of random variables X1(7) and Mx(s,
7). First, consider the case that the correlation coefficient p is nonzero. Let

o
L(7):= -ij(T) —p Xo(7). (3.1
1
The random variable Z(7) is independent of X>(7) because their covariance is zero.
Thus the stochastic processes {Z(7)} and {X2(7)} are independent. The joint
distribution function of X;(7) and M,(s, ) can be calculated as follows:

Pr(X,(T) < x, Ma(s, £) < m) = Pr(=L (Z(T) + p Xo(T)) < x, Ma(s, 1) < m)

o,
= E[Pr(p Xo(7) < LRV Z(T), Ma(s, ) sm lzcm)]. (3.2)
g,
Now, let us calculate the inside conditional probability term in (3.2). It follows

from the joint distribution of X»(7) and Ma(s, ?) that the inside conditional probability
term in (3.2) can be easily obtained. The following probability can be calculated,

Pr(Xy(T) > x, Ma(s, t) <m)
= Pr(Ma(s, £) < m) — Pr(Xo(T) < x, Ma(s, t) < m)

2y
2 s x=u,T t s s
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1 — Uyt e=m_”25 f= —m— u,t m+ 4,8
ot ST s T o s
denotes a bivariate standard normal distribution function. Applying the probability
formulas (2.2) and (3.3), we can obtain the probability formula,

where d = and g= . Here, @, )
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Pr(pXy(T) < x, Ma(s, 1) <m)

—a>3<s<p)"—/”—”—2, d, ,s(p>\f s >\/7 \f)
L / p=2m—pu,T
—e” Dy(s(p) L 63’?“2 ,ﬁg;sw)\g,—s(p)\/%,—\/g), (3.4)

2

where s(p) is 1 if pis greater than zero and s(p) is —1 otherwise. Thus it follows from
applying (3.4) that the last line of (3.2) can be rewritten as

% X~ Z(TY)/ p- i,
E[(D3(S(P) - ( 3/)—/) ‘u s a € (,0) - S(P)( \f)]

e %2 x—~Z(T))/ p—2m—u,
e E[ds(s(p) -2 ())% mT s —(p)ﬁ —\/3

(3.5)

Consider the first expectation in (3.5). Let (U, ¥, W) be a random vector with
trivariate standard normal distribution and correlation coefficients Corr(U, V) =

s(p) \/; , Corr(U, W) =s(p) % and Corr(V, W) = \/g . Assume that the random

variable Z(7) is independent of the random vector (U, ¥, W). Then, the first
expectation in (3.5) can be calculated as follows:

(2 x-2(T) p=mT
o T

=E[I(|p|c2VT U+ Z(T) < —x—p,uzT v<d, W<e)

—em(x “‘ d, ,p\f ( \f) (3.6)

Let us calculate the second expectation in (3.5). Assume that the random vector
(U, V, W) has a trivariate standard normal distribution with correlation coefficients

Corr(U, V) = s@)\/;, Corr(U, W) = —s(p) % and Corr(V, W) = — % . Also

E[E[I(U < 5(p) JV<d, w<e)lZ(D]]
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assume that the random variable Z(7) is independent of the random vector (U, V, W).
Then, the second expectation will be calculated as follows:

~Z(T)/ p-2m— p,T
BB < s(p) 22D } " y<fw<g)lzZ
o,VT

=E[l(|p|o2NT U+Zm<—~x 20m — poT, V<f, W<g)]

—@("alj‘% j’j"— f, ,p\f F —\f) 3.7)

Finally, it is straightforward to consider the case that the correlation coefficient
p 1s zero, because the stochastic processes {X|(7)}and {X>(7)} are independent.

4. Application to an Outside Barrier Option

This section applies the joint distribution function of X(7) and Mx(s, t) to derive
an explicit pricing formula for outside barrier options whose monitoring period starts
at an arbitrary date and ends at another arbitrary date before maturity. The payoffs of
the outside barrier options depend on prices of two underlying assets. Let S)(¢) and
S5(f) denote the time-# prices of two underlying assets. Assume that these assets pay

no dividends. Assume that forz=0,i=1and 2,
Si(r) = Si(0)exp(X(1)),

where {(X1(¢), X>2(¢))'} is a 2-dimensional Brownian motion as mentioned in Section 2.
Let us take a look at an up-and-out outside barrier put option. Assume that the
strike price is K, and the barrier level is B. Let b = log[B/5(0)] and & = log[K/S(0)].
The activating condition of the barrier option is {M(s, £) < b}. The put condition is
{X1(T) <k}. The payoff of the put option will be (K — Si(7)) if the option satisfies its
activating condition and Si(7) is less than K. The payoff can be expressed as follows:

K— Si(D), if My(s,t) < b and Xi(T) <k
0, otherwise, 4.1

By the fundamental theorem of asset pricing and by Esscher transforms of Geber and
Shiu (1996), the time-0 value of the payoff (4.1) is

e TE" [~ (Su(T) - K)I(Mas, 1) < b, Xi(T) < k)]
= - SI(O)Pr (Ma(s, ) < b, Xy(T) < k) + €K Pr'( Ma(s, 1) < b, X,(T) <Kk). (4.2)
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Now, the final step for pricing the outside barrier option is to calculate the
probabilities of (4.2). These probabilities are the same as (2.4) except that the drift
parameter vectors of the first and second probabilities are

(W py )=(r+ cl2,r— c}2+ poioy) (4.32)
and
(ki 13) = (r= 0212, r = G2 12), (43b)

respectively. Similarly, we may derive pricing formulas for several types of outside barrier
options.
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