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Test of Symmetry
against Near Type III Positive Biasedness

Myongsik Oh!

Abstract

One of the widely accepted assumptions in many statistical problem is that the underlying
distribution is symmetric. Though a large number of nonparametric test are available in the
literature for this problem, very few procedures focuses on the distributional structure when
the symmetry assumption is rejected. Yanagimoto and Sibuya (1972) provided the various
types of asymmetric distributional structure, positive biasedness, namely. In this paper we
consider the test of symmetry against several new positive biasedness restrictions which are
stronger than Yanagimoto and Sibuya’s type II bias but weaker than type IV (III) bias.

Keywords: Isotonic regression, order restricted inference, peakedness, stochastic ordering.

1. Introduction

One of the widely accepted assumptions in many statistical problem is that the underly-
ing distribution is symmetric. Many statistical procedures, for example Wilcoxon’s signed
rank test, may result in low validity if this symmetry assumption is violated. Moreover,
when the symmetry assumption is satisfled many statistical procedures based on normal
theory can be applied for many problems with moderate or large sample sizes. In this sense
the symmetry assumption is very crucial. Though a large number of nonparametric test are
available in the literature for this problem, very few procedures focuses on the distributional
structure when the symmetry assumption is rejected.

Yanagimoto and Sibuya (1972) provided the various types of asymmetric distributional
structure. We called them “Positive biasedness.” We list them below. Let F' be the distri-
bution function of random variable X. Note that F(z—) = Pr[X < z].

Type 0 1 — F(0) > F(0-),
Typel F(z)+ F(—z—) for any z > 0,
Typell F(z+vy)— F(z)> F(—z-)— F(-z —y—) for any z,y > 0,

Type Il (F(z+y) - F(y))/(F(-y-) — F(—z — y—)) is nondecreasing
in both z,y > 0, and

Type IV (F(z +y) — F(y))/(F(-y—) — F(—z — y—)) is nondecreasing
in both z > 0 and y.

1 Associate Professor, Department of Statistics, Pusan University of Foreign Studies, Pusan 608-738

_63_



Test of Symmetry against Near Type III Positive Biasedness

The implication scheme of positive biasedness is depicted as follows. This figure is
adapted from Yanagomoto and Sibuya (1972).
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Among these, Type II bias has received a substantial amount of interest because it is closely
related to stochastic ordering. Specifically we say that X is positively type II biased if X
is stochastically larger than —X. Dykstra, Kochar and Robertson (1995) studied likelihood
ratio tests against type I and II positive biasedness. To our best knowledge no test for
symmetry against type III or IV bias has given so far. This seems to be mainly due to that
the restrictions of type III or IV positive biasedness are too strong.

In this paper we are going to consider the test of symmetry against several new positive
biasedness restrictions which are stronger than type II but weaker than type IV (or type
IIT). Among these restrictions one is related to uniform stochastic ordering and another
one is related to likelihood ratio ordering. In section 2 we discussed these new types of
positive biasedness and their relationship to various type of stochastic orderings. In section
3 estimation of distribution functions under new positive biasedness and likelihood ratio
test for symmetry against new positive biasedness under discrete setting are discussed.

2. Near Type III Positive Bias

Let p = (P—k,P—k+1s---1P=1,00,P1,- - -, Pk) be 2k+1 dimensional probability vector, i.e.,
i2

p; > 0 and Zi.;_kpi = 1. Then the type III bias can be expressed as Z;zzh Pi/ 2, P-i
is nondecreasing in both 0 < i1 < iz. The type IV bias is expressed as 2;2___1.1 pj/Z;?:il Dp—j
is nondecreasing in both i; < ia. It is clear that type III bias does not satisfy the restriction
Z?=1 p;i/ Z;?:l p—; > 1 and hence does not imply type II nor type I bias. Now we add this
restriction to type III biasedness. Then we call it Near Type IIT Positive Bias. It is easy to
show that the near type III bias now imply type IT and type I bias. Since Z;:a p;/ Z;Lil Dj
is nondecreasing in 1; for type IV bias, i.e., Z?ﬂlpj/Z?:“p_j > 1for iy, = —k,...,k,
then the type IV bias imply the near type III bias. Now we have new implication scheme
as shown below.

Near III II I 0

v

The near type III restriction is, however, still too strong. Now we are going to pick up
the two special cases from near type III positive biasedness. First let 7, > 0 and ip = i1 + 1.
Then this restriction becomes

k k
Piy_ s nondecreasing in i; = 1,...,k, and ij > Zp_j. (2.1)
P—i j=1 j=1
Second let 7; > 0 and i = k. Then it becomes
k k k k
ij/z p—; is nondecreasing in 41 = 1,...,k, and Zp] > Zp_] (2.2)
Jj=i1 j=i j=1 j=1
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For convenience we call the former restriction a near type III(a) biasedness and the latter
near type I1I(b) biasedness. It is not difficult to show that we have new implication scheme
as follows.

IV —— Near II —— Near III(a) —— Near III(b) I I 0

Next we are going to find likelihood ratio tests of symmetry against near type III (a)
and (b) positive biasedness.

3. Likelihood Ratio tests

For type I and II biasedness, Dykstra, Kochar and Robertson (1995b) proposed the
likelihood ratio test statistic whose limiting null distribution is chi-bar-square distribution.
In this section we consider the problem of testing the null hypothesis of symmetry about 0

Ho D =P fOI"i=1,...,k

against the alternatives H1 — Hg and Ho — Hy, where H; and Hs postulate the restrictions
(2.1) and (2.2) respectively.

3.1 Test of Hy vs H; — Hy

First consider type III(a) restriction. We need to find the estimate of distribution func-
tion under type I1I(a) restriction, which can be achieved by maximizing

k
pe° [ piip23 (3.1)
i=1
subject to restriction (2.1), where n; denote the the number of observations at ¢ = —k,...,k.
We use a one-to-one transformation of parameter space. Let A; = ZLl pi, A1 =

Zf:lp—i’ AO = Do, A; = pi/Al, a_; = p_,-/A_l for i = 1,...,k, and ag = 1. Then
we need to maximize

k k k
[Lapars: - A aZpm ™ ago (32)
i=1
subject to
G is nondecreasing ini =1,...,k, and A; > A_1, (3.3)
a—;

and a; > 0, Zle a; = Zle a_; =1, and E}z_l A; = 1. We note that no restrictions relate
a;’s and A;’s to each other. This means that we only need to maximize (3.2) by maximizing
two parts separately under corresponding restrictions. The former part is likelihood ratio
ordering problem which was studied extensively by Dykstra, Kochar and Robertson(1995a).
We use another one-to-one transformation again. Let ny = Zle n; and n_ = Zf=1 n_;.
Let 6; = nya;/(nya; + n_a—_;) and ¢; = nya; + n_a_;. Then the maximization problem
becomes

- 1\"™ 1\"™ £ n; n_; nitno;
maximize (-——) (n—_-> il;[lOi (1-19,) qui (3.4)

N+ i=1
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subject to
6y <02 <o < bk, (3.5)

together with (a) 0 < 6; < 1, ¢; > 0 for i = 1,...,k, (b) Zle ¢; = ny + n_, and
(c) Zf=10,-¢,- = ny. From Theorem 2.1 of Dykstra et al. (1995a) the constraint es-
timator of # under (3.5) is given by 6" = En, 4n_ (4|I), where ny = (ni,na,...,nk),
n_=(n_1,n_2,...,n-k), I = {x € RF 12y <z <--- <21}, and Ew(x|A) is the isotonic
regression of x with respect to w onto A. All the vector operations are componentwise.
Hence we have

n; +Nn_; n
@ = 2——Fn 4n_ _;u
: n4 + n++n_ i,
n;+n_y n_
a*; = i lEn++n_ —|A) ,
n- ng +n_ i

fori=1,...,k where A= {x€ RF: —x eI}
Next we find the constraint estimator of A;’s under (3.3). Let ng = (Zi;l n—;, Mo, Zi;l n;).
Let D = {x € R®:z; <z3} and n =n_ + ng +ny. Then

A* = (A%, A5 AN = E(221D). (3.6)
n

Theorem 3.1 If n; > 0, then the maximum likelihood estimate of p under (2.1) is given
by p* where p* = (p*y,...,pg) With

" n; +n_g n; ny
. = ———E n _— I ‘E - D y
; et e (555 1) B (321D),
oy = E(24p) =22,
n 0o n
" _ ni+n_1-E n_ IA E(nA|D>
P-i = n_ M- Ang 40, n -1’
fori=1,...,k
Let p° denote the estimate of p under null hypothesis. Then
g+ N4 ny ng
o - NiTh-ip S ST -E(—D°) ,
p; ny ny+n- <n++n_| )i n | 1
nsa no
(] — E A D°> = —,
Po ( n | o 7
n; +n_; n_ ng
o - Lithmp 2 ¢ -E(—D°> ,
. et pin (e 10) B (1),
fori=1,...,k where C = {x € RF:z1 =z =+ = 21}, and D° = {x € R3 : 71 = z3}.

For discrete setting the restricted estimators are strongly consistent. This is due to
the continuity property of isotonic regression with respect to weights and arguments. See

Robertson et al. (1988).
The likelihood ratio test rejects Hy in favor of Hj for the large values of

k k
Ty = 2 {Z n(Ing —1n6) + Y n_i(In(l - 6;) —In(1 ~ 9?))}
i=1 i=1

k k
+2 [(Z n_)(In At —lnA%;) + () ni)(nAf - lnAf)} .

i=1 i=1
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Note that A3 = Aj. The following theorem provide the asymptotic null distribution of To;.
We omit the proof.

Theorem 3.2 If p; =p_; for i =4,...,k and n goes to infinity, then for every ¢ > 0,

k
1
lim PriIp; >t] = Z‘ [P(¢,k;ps) + P(€+ 1,k py)] Prixg > 1),
n—oo pard 2 :
k k
KN\ /1 2
< Z <£> (§> Prixg >,
£=0

where p; = (p1,--.,DPk), and P(¢,k;py) for £ =1,...,k is the probability that Ej, (X|I)
takes ¢ distinct values, where X = (X,..., X)) consists of independent random variables

and X; is N(0,1/p;), and P(0,k;p4) = P(k+1,k;ps) =0.
3.2 Test of Hy vs Hy — Hy

To find maximum likelihood estimate of p we consider the maximization of (3.1) under
(2.2). We use the same reparametrization scheme as in (3.2). Restriction (2.2) becomes

k
M ¥
%—_ZJ— is nondecreasing in ¢ = 1,...,k, and A; > A_;. (3.7)
Z]’:i a—j
The constraint on a; and a_; in (3.7) is uniform stochastic ordering. Dykstra et al. (1991)
first proposed the statistical inference including likelihood ratio test for discrete distribution

under uniform stochastic ordering. Using the same estimation procedure we can easily find
the maximum likelihood estimate of a;’s under (3.7).

k k k k
Let i =32, ;4105/ 2 =105 and i = D j=it10-j/ 2 j—;a—;- Then (3.7) becomes
ni<mfori=1,...,k—1, and 41 > A_;. (3.8)

Now we need to find 7 and A which maximize
k-1 Kk Kk k k
Dimip™ DRI D DI TR e
I | NI T (L) ST (L) A =M AL= T AR

subject to (3.8). Note that no restriction relate the pairs (1;,7—;) for different values of ¢ nor

n’s and A’s. The constrained estimate of A is given in (3.6). Let n(®) = (Z;C T Ef JN—j)

The constrained estimates of (1;,n—;) under (3.8) is given by (nf,n',) where, for i =
nG+D)

1,...,k—1, (nf,nf_i) =E,® (Wlfz), where Iy = {x € R? : 71 > z»}.

Theorem 3.3 If n; > 0, then the maximum likelihood estimate of p under (2.2) is given
by p! where pf = (p PR ,p};) with

(l—E o (n#D/nO|L),)- E (%4 |D) ifi =1,

ol = [Tj=1 Enw» (0D /mW)| L),

: (1—E<>(n<1+1>/n(l)112)) E(" |D),, ifi=2,....k—1,
H E‘()(l’lj—l-1 n(J)lfg ( ) s if’i:k,

t_ na _ M

Po = E( n D)o_ n'
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¢! - By (04 /n0[1),) . E (2a|D)_,, ifi=1,
T H;;llEn(j)(n(j+1)/n(j)|l2)2
P—i = (1—E<>( (1) /n0)|L),) - E (24|D) _,, ifi=2,...,k-1,

H E (T @), . (_qup)_l, ifi =k,

The likelihood ratio test rejects Hy in favor of Hy for large values of

k-1 & k-1
2 [Z( Z nj)(lnn2 Inn?) —i—Zn2 In(l-7n ) In(1 - 7n}))

i=1 j=it1
k—1
+Z Z n_j lnn ;,—1nn2)) +Zn_1 In(1 - _Z) In(1-72,)
i=1 j=i+1l i=1

k k
2 (S n_)(nAz; —1nA%;) + (D n)(ln Af - lnA‘{)] .
i=1 i=1

We state the following theorem without proof for asymptotic null distribution of Tps.
Theorem 3.4 If p; = p_; fori =1,...,k and n goes to infinity, then for every ¢t > 0,

lim Pr(Ty, > ] = i (2) (%)kPr[xf > t).

£=0
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