
Embedded Software Development for MSC on KOMPSAT-2

H.P.Heo, J.P.Kong, S.S.Yong, Y.S.Kim, J.E.Park, H.S.Youn, H.Y.Paik
Korea Aerospace Research Institute

45 Eun-dong Yusung-gu, Taejon 305-600, Korea
(hpyoung, kjp123, ssyong, yskim1203, pje, youn, phy) @kari.re.kr

Abstract: MSC(Multi-Spectral Camera) system is a remote
sensing instrument to obtain high resolution ground image.
MSC system includes main control unit, called SBC(Single
Board Computer). SBC controls all the sub-units of MSC sys-
tem and communicates with spacecraft bus. The software de-
veloped for SBC should be reliable and autonomous to support
various kinds of imaging missions. It is being developed using
VxWorks real-time operating system to manage all tasks for all
units efficiently. In this paper, the characteristics of the embed-
ded software on the MSC system will be presented. It covers
the hardware related characteristics like the BSP(Board Sup-
port Package), device driver and code patch mechanism.
Keywords: MSC, SBC, BSP, Code Patch, Mission

1. Introduction

The MSC which is a main payload on KOMPSAT-2

satellite is being developed. MSC system consists of
EOS(Electro-Optic Subsystem), PMU(Payload Man-
agement Subsystem) and PDTS (Payload data Transmis-
sion Subsystem), and PMU includes SBC. SBC incorpo-
rates Intel 80486 as a main processor. Embedded soft-
ware on the SBC board communicates with OBC(On-
Board Computer) which is a main controller of the
spacecraft, and manages all the sub-units of the MSC
system. SBC software handles all the information and
activities for the mission operation using VxWorks real-
time operating system.

2. SBC Software Requirements

SBC software has several functions and capabilities

that enable MSC system to perform imaging missions.
SBC software receives and executes all the command
messages from OBC through mil-std-1553B communi-
cation channel. These command messages contain a lot
of information for MSC system to execute required mis-
sions. SBC software sends SOH(State Of Health) data to
OBC every second. This includes not only simple state
of all the units but also the important analog telemetry
like main power voltage and temperature. SBC software
deals with mission execution. MSC system has several
predefined missions like real-time imaging, simultaneous
imaging and playback, memory playback, OBC data
playback, and so on. Every unit should be configured
properly according to predefined configuration order
before executing a mission. Some missions that shall be
executed within at least coming 24 hours will be stored
in the SBC memory. SBC software manages several sys-
tem data tables that are required by different units for
their assigned functions. Most of them are to be stored in
flash memory and these can be updated to RAM by

ground station commands.

3. SBC software design

SBC software incorporates VxWorks as a real-time op-

erating system in order to handle all the simultaneous
activities. SBC software consists of four main tasks and
several modules to deal with controlling commands and
data for imaging and all the state of health telemetry data
and to perform interface with the other MSC units. The
main structure of SBC software is depicted in fig.1.

1553

Communication
handler

Periodic: 10ms

Priority: 1

APDE

Periodic: 100ms

Priority: 4

Telemetry

Periodic: 50ms

Priority: 2

Scheduler

Upon timer event
Priority: 3

Execution

Telemetry Commands

Messages
Messages Messages

Link List

Commands

APDE
Driver NUC, DCSU, EOS, CCU, THTM, APDE

DATA (tables & patch)
handler

Data
OBT

handler

Time 1553
Communication

handler

Periodic: 10ms

Priority: 1

APDE

Periodic: 100ms

Priority: 4

Telemetry

Periodic: 50ms

Priority: 2

Scheduler

Periodic: 50ms

Priority: 2

Scheduler

Upon timer event
Priority: 3

Execution

Telemetry Commands

Messages
Messages Messages

Link List

Commands

APDE
Driver NUC, DCSU, EOS, CCU, THTM, APDE

DATA (tables & patch)
handler

Data
OBT

handler

Time

Fig. 1. SBC Software Main Tasks and Main Modules

The 1553 communication handler receives command
messages and parses them and transmits them to the ap-
propriate task or module. Spacecraft OBC works as a
BC(Bus Controller) and SBC works as an RT(Remote
Terminal). The linked list module manages a command
table that is sorted by execution time of each command
by means of linked list data structure. Each command
has its own execution time in half-second. A new com-
mand can be inserted into the linked list by the order of
execution time and a command in the linked list can be
deleted by request. Commands that should be executed
in the next delta time can be fetched with respect to the
current time. Access to this linked list command table is
controlled by mutex semaphore. The scheduler task is
required for checking if there are commands that are to
be executed and fetching such command from linked list
command table. This task will be executed every 100
millisecond. Scheduler task sends each command to the
execution task through message queue. The execution
task waits for new command from message queue all the
time. New command is executed as soon as it arrives.
Most of the commands will be executed by sending them
to the appropriate units through serial communication
channels. Therefore, this task calls suitable communica-
tion module to send them. OBC sends time-mark signal
every second through discrete line and sends OBT(On-

Board Time) message through mil-std-1553 communica-
tion channel every second. There are many system data
tables required for mission executions. Data handler
module gets parts of or whole table data that should be
updated from mil-std-1553B handler module. SBC soft-
ware supports mission execution. One mission script
takes care of performing one whole mission and consists
of a series of related commands, which are to be exe-
cuted in the designated sequence, with a specified time
interval between commands. Dozens of mission scripts
are defined in advanced and stored to flash memory.
Mission script can be activated only when they are cop-
ied to the linked list command table by the mission exe-
cution command from OBC. Mission execution com-
mand will include the index of mission script and the
absolute time when the mission should be executed. Des-
ignated mission script will be copied to linked list com-
mand table and time interval between commands will be
translated into the absolute time. The telemetry task
gathers all the state of health data from all the units by
receiving relevant message through serial communica-
tion channel. This task sends telemetry data to OBC
every second according to the telemetry format table.
The ATS(Antenna Tracking Software) task controls the
x-band antenna to communicate with ground station.
This task calculates the angle of antenna and sends it to
APDE through serial communication channel every 10
milliseconds. In order to calculate the next position of
the antenna, the information about the position of satel-
lite in the orbit, the attitude of satellite and the feedback
value of current antenna position are required. There are
six different software modules to communicate with six
different units(EOS, THTM, NUC, APDE, DCSU,
CCU). Each communication module deals with transmit-
ting commands and gathering telemetry.

4. SBC Software Initialization

When SBC is boot up, the software follows special se-

quence because it is operating on the satellite in the
space. After turn-on the SBC, the software checks a
‘PMU active’ discrete signal if current SBC is indicated
as an active one. If not, the software will be in idle mode
at which nothing will be done. After then, it checks if
there is a code patch request. According to the reset type,
it performs power-up BIT(Built In Test) which include
data bus test, address bus test, RAM test, flash test and
1553 device memory test. It will be done only when it is
cold reset, because it is a destructive test. If it is cold
reset, the software code in the RAM will be checked
using checksum whether there has been SEU(Single
Event Upset) and the code is spoiled. If there is code
patch request, the part of the operating software in the
RAM will be updated from a predefined buffer which
has been filled with new software code before previous
reset. The general initialization sequence is shown in the
fig.2 and code patch mechanism will be described in the
next chapter.

SBC OFF

set to active?SBC is idle

Patch Request?

Hot? Cold?

Perform PBIT

Load SW from
Flash to RAM

Initialize SW Task

Update SW Code

Code
Checksum OK?

Enable Interrupt & 1553 Com

Normal Operation

NO

YES

NO

YES

YESNO

HOTCOLD

Fig. 2. SBC Software Initialization Sequence

5. BSP & Device Driver

BSP(Board Support Package) has been developed for

VxWorks kernel and application software. It was modi-
fied from general 80486 BSP to be used for SBC. And it
includes x-modem driver in order to establish the com-
munication with host computer. It is managed by full-
duplex serial communication and it is managed by inter-
rupt. Device drivers have been developed for 1553 de-
vice, UART, discrete signal and system timer and so on.
Internal memory and registers of the 1553 devices are
mapped as a part of system memory. Because 1553 de-
vice has 16 bits data bus, in order to interface 32 bits
80486 CPU, only 4-byte aligned address areas are being
used. Device driver handles address mapping from CPU
to 1553 device. UART and all the other discrete signals
are mapped into IO space. CPU internal cache memory
is not being used because it is not immune to the radia-
tion and it is disabled in the BSP. Segmentation and pag-
ing schemes are disabled also. Real mode operation of
the CPU will be changed to protected mode just after
power-on. System clock is adjusted to 100 ticks per sec-
ond. Boot code, kernel and application will be com-
pressed and reside in the flash memory. When it boots
up, they are decompressed and copied into the ram.

6. Code Patch Mechanism

SBC software has been design to be stable, reliable and

deterministic and it is being tested very carefully because
it will be a part of the satellite. However, after launching
KOMPSAT-2 satellite, if some serious bugs are found in

the SBC software, they can be fixed using code patch
mechanism which was designed and considered during
the development phase. It is very unique characteristic of
the SBC software compared to the other embedded soft-
ware. Even though VxWorks provides dynamic linking
of the object modules, it is not used for code patch
mechanism of the SBC software. All of software code
patch mechanism is handled in the application level.
SBC software consists of a lot of modules and functions,
therefore, various kinds of bugs can be imagined. In or-
der to cover many kinds of possible bugs, code patch
mechanism has been designed and implemented very
carefully. When some bugs are found, we need to change
the software code in order to fix them. At that time,
some new local variables may be added, or some new
global variables may be added, or some lines of code
may need to be added, or some lines of code may need to
be deleted, or simply a value of constant may be changed,
or some external function may be called. Because the
complete software cannot be updated using code patch
mechanism, the bug should be fixed with minimum
change of software code. When the final SBC software is
compiled, linked and programmed into the flash memory
of SBC board, the final loadable module and memory
map file need to be saved at the ground station because it
will be used as a reference for the future code patch. Ba-
sic structure of the loadable module of SBC software is
described in the fig.3.

0x08000(-Ttext)

Text
0x6B5B0 "0x75000"

"0x85000"

0x735B0

0x07D50 Data
0x7B300

0x082B0 0x835B0

Fig. 3. Structure of Loadable Module(VxWorks)

Output file of the compiler and linker divided into
three parts. The ‘text’ section includes all the functions
of the software, and the ‘data’ section includes all the
global variables which are initialized with some value
apparently, and the ‘bss’ section includes un-initialized
global variables. That’s why the bss section does not
appear in the loadable module which includes relocation
information. The loadable module that is described in the
fig.3 will be located in the actual SBC RAM after boot-
up as described in the fig.4. The memory location of
each part can be controlled using link options, -Ttext, -
Tdata and –Tbss when we build the loadable module.

In order to fix the bug in the SBC software, some
modifications need to be made. Therefore, some part of
text, data and bss area may be changed. We can get the
exact address of the modification in the SBC RAM by
comparing the reference(original) loadable module and

the loadable module which was generated with modified
SBC software. The code in this memory area can be
changed by the ground-station command to MSC system.

0x00000

0x08000(-Ttext)
0x6B5B0 Text

0x735B0

0x01A50

0x75000(-Tdata)
0x07D50 Data

0x7CD50

0x082B0

0x85000(-Tbss)
0x05BC0 Bss

0x8ABC0
0x3C4A0 COMMON

0xC7060

0x42060

0x10000

Fig. 4. Software Size and Location in the RAM

In order to minimize the changes of the loadable mod-
ule, we can insert constant size of gap between every
function or between every module. However, if we insert
a constant gap between every function, the RAM should
be very big. Therefore, only constant size of inter-
module gap is inserted in the SBC software. In this case,
the change of a certain module will not affect the other
module, accordingly, the address of variables and func-
tions in another module will not be changed. There are
several kinds of code modifications which cause the
changes of pointers of functions and variables in differ-
ent way. They are changing constant values, adding
global variables, adding local variable, deleting one line
in the code, adding one line in the code and calling ex-
ternal functions.

7. Conclusion
SBC software has been developed for MSC system to

perform ground imaging. It consists of several real-time
tasks which make it possible to configure all the sub-
units of MSC system in order to provide various mission
executions. Even though it has been designed to have
high reliability and it will be tested thoroughly, SBC
software has a capability of code patch during the on-
orbit operation.

References

[1] MSC Critical Design Review Package
[2] SBC Software Requirement Specification
[3] MSC Operation Requirement Specification
[4] MSC PMU Interface Requirement Specification

	Return to previous screen
	Embedded Software Development for MSC on KOMPSAT-2

