Using Kalman Filtering and Segmentation Techniques to Capture and Detect Cracks in Pavement

  • Hsu, C.J. (Department of Civil Engineering, National Central University) ;
  • Chen, C.F. (Center for Space and Remote Sensing Research, National Central University)
  • Published : 2003.11.03

Abstract

For this study we used a CCD video camera to capture the pavement image information via the computer. During investigation processing, the CCD video camera captured 10${\sim}$30 images per second. If the vehicle velocity is too fast, the collected images will be duplicated and if the velocity is too slow there will be a gapped between images. Therefore, in order to control the efficiency of the image grabber we should add accessory tools such as the Differential Global Positioning System (DGPS) and odometer. Furthermore, Kalman Filtering can also solve these problems. After the CCD video camera captured the pavement images, we used the Least-Squares method to eliminate images of gradation which have non-uniform surfaces due to the illumination at night. The Fuzzy Entropy method calculates images of threshold segments and creates binary images. Finally, the Object Labeling algorithm finds objects that are cracks or noises from the binary image based on volume pixels of the object. We used these algorithms and tested them, also providing some discussion and suggestions.

Keywords