상호영향형 R&D과제군의 평가선정을 위한 새로운 「DEA」모형의 개발

권철성*, 박종호**, 홍석기***
*성균관대학교 시스템경영공학부 교수
**성균관대학교 과학기술연구소
***LG전자 SIC 기획그룹

Abstract

The purpose of this paper is to construct a CIDEAR(Cross Impact Data Envelopment Analysis Assurance Region) model which evaluates proposed R&D projects considering cross impacts among them and selects them to utilize R&D resources effectively as well as to maximize effectiveness of investments. For this purpose, the following six steps are designed as the main procedure. 'Decision Theory & Evaluation Model', 'AR Decision & Evaluation Model', 'Resource & Performance Analysis Model', 'Cross Impact Assumption Model', 'Priority Order Decision Model', 'Efficiency Cause Analysis Model'. 'CIDEAR' model can deal with the affairs of R&D projects having the characteristics of mutual independence as well as mutual dependence. Hence it is possible to evaluate and select R&D projects more accurately than any other models.

1. 서론

기술이 기업의 성장 및 성장의 핵심동인이라는 인식이 확산되면서 기술개발을 위한 연구개발(Research and Development; R&D)에 관심이 고조되고 있다. 특히, 지식을 통해 원활히 흐르면서 경쟁하고 있는 기업들 사이에서는 시장인 정밀확률, 기술의 복합화 과 혼합화 등으로 R&D규가 많이 갈수록 대규모화되고 있는 실정이다. 따라서 R&D에 대한 잘못된 투자는 기획예산의 상실뿐만 아니라 기업의 존속도까지 골짜기로 연결되게 된다. 이런 경우에는 아닐리라도, 기업이 활용할 수 있는 자원의 각각 부분에 R&D투자자산의 효율적인 이용과 투자효과의 균등화를 위해 R&D프로젝트의 선정에 대한 중요성을 매우 큰 것이다.

따라서 본 연구에서는 R&D프로젝트를 대상으로 기존에 개발되어 있는 평가항목의 독립성 및 관계성을 품질로 한 이론의 문제를 나타나, R&D프로젝트 평가항목의 상호영향을 파악하는 것으로 정의한 이론적 토대로 R&D프로젝트 평가항목의 선정에 대한 수법을 개발하고자 한다.

이용의 R&D프로젝트 선정기준이 포함되고 결정한 평가가 될 수 있도록 유 효성 및 효율성의 두 개념을 포괄하여 측정한다. 단순한 결과처리 차원을 빼 아시아의 상호관련성 조사 결과산출상태를 넣은 경우 비 효율적인 투자는 기술에 기반하지 아니면 규모에 기반하는지 알리는 것을 용의를 가지고 고지한다.

이를 위해 본 연구에서는 R&D프로젝트의 선정을 위한 평기를 형성하기 위하여 「DEA-AR」모형과 AR 지표의 계도적 접근 방법인 AHP, 그리고 상호증 수성을 반영할 수 있는 CIA를 결합함으로써 「상호영향형 R&D프로젝트」의 선정평가를 위한 새로운 수리모형의 개발을 목적으로 하고 있다.

2. 선행연구의 심포

래질모형 관련연구로 「AHP(Analytic Hierarchy Process)', 'DTA(Decision Theory Analysis)', 'CIA(Cross Impact Analysis)', 에 대한 이론적 고찰과 함께 「DEA(Data Envelopment Analysis)」에 대한 선행연구들은 검토하고자 한다. 「DEA」는 비효율적인 의사결정단위의 관리효율을 중대한 이론과 경제학적 요인으로 보란 「DEA모형」 자체에 대한 연구로 크게 들려나온다. 본 연구에서는 「DEA모형」 자체에 대한 연구를 종합으로 검토하는데, 먼저 전통적인 DEA모형의 「CCR모형」과 「BCC모형」에 대해 검토한다. 그리고 「AHP」 모형과 결합함으로써 문제정점을 시도한 「DEA와 AHP형」, 「DEA형」 자체가 포함하고 있는 문제점들을 해결하기 위해 모형내부에 개략적을 추가한 「DEA-AR 모형」(Assurance Region: AR)에 관한 연구, 그리고 AR의 범위정점을 위해 계겠다고도 접근을 시도한 「DEA-AR와 AHP형」 등과 같은
3. 'CIDEAR' 모형의 개념설계

3.1. 문제제기

전통적인 DEA모형과 개념별 DEA모형을 활용하여 효율성을 측정하고자 한 기존의 연구들은 수리 모형 자체의 한계점을 극복하지 못하고 있다고, 복잡한 R&D활동의 특성을 고려하지 못하고 있었다. 'CCR모형'과 'BCC모형'은 전통적으로 패널되지 않는 DMU의 수를 제한할 수 있기 때문에 실제 경영 시에 문제가 있다. 일반적으로 R&D프로젝트는 예산의 제약 때문에 일정 수의 과제가 선정되기 때문에, 이때 DEA에서 '효율적'이라고 판정한 과제의 수는 많지 않은 경우, 효율적이라고 판정된 과제가 긴 수영에 대하여 DEA모형은 뛰어난 결과를 가질 수 없다. 그로 해 제출된 R&D프로젝트의 수가 평가기준의 수보다 적은 경우에도, 대부분의 과제가 효율적이라고 판정되는 경우에 뛰어난 결과가 생기지 않는다.

또한, DEA모형을 적용하기에 앞서 반드시 실행되어야만 하는 평가기준 결정수법의 주요원리를 따르지 않고 있으며, 프로젝트 신청평가사 상의행위적 적용되어 있는 경우는 프로젝트 내부의 실적과 상호를 정리하게 표현하지 못하는 문제점이거나 가지고 있다. 그리고, 이는 결과, 복잡한 것으로서의 R&D프로젝트간 상호경쟁성이 희박하게 발생하였으며, 복잡한 프로젝트를 단순히 독립적으로만 측정함으로써 정확한 프로젝트 평가를 수행하지 못하고 있는

3.2. 개념모형의 등

3.1에서 검토한 문제모형을 해결하기 위해서는 'CIDEAR' 모형의 설계로 전환한 개념모형을 제시한다.

제목 대신, '경쟁력평가모형'은 프로젝트들을 평가하기에 앞서 가능한 효율성을 소비자에게 반영할 평가를 할 수 있도록 하기 위한 사전준비단계가 필요할 수 있다. 그중 'AR범위 선정모형'은 '경쟁력평가 모형'에서 앞서 정의한 'K倥'과 'BCC모형'이 적용되는 경우를 추가로 사용할 수 있다.

또한, '지역성평가모형'은 평가대상의 복잡성을 통해 평가할 프로젝트의 수를 감소하고 싶어, 제출한 제시를 통해 'Plotting모형으로써 캐리 4개의 영역별로 프로젝트를 추세에 따라 분류하고자 실제화된 모형이다.

다섯째, '수선수준 결정모형'은 'CIDEAR모형'을 적용하여 R&D프로젝트의 총합효율성을 도출하는 단계이다. 여섯째, '효율성평가 모형'은 '지역성평가모형'에서 분류된 4개의 영역을 다시 DMU로 구성하고, 복잡한 범위의 모형들이 기술효율성에 기인하는 지역성과 경쟁력이 기판하는지 여부를 판단하는 방법으로, 'DEA모형'은 BCC모형'을 적용하여 도출하도록 설계된 모형이다.

4. 'CIDEAR' 모형의 구조설계

4.1. '경쟁이론 평가모형'

'평가항목설정', '평가항목설정', '평가항목설정'의 3 단계로 구성된다. 이는 프로젝트를 신청 평가하기 위해 필요한 일련의 채택기준을 고려작업의 범위를 포함시키기 위한 것이다. 이러한 일련의 채택기준을 고려하여 프로젝트를 올바르게 측정하고자 하는 본 연구의 접근방식을 반영한 것이다.
4.2. 「AR법 위 결정모형」
<단계 1> 상호 관리되어 있는 여러 의사결정 사항들을 계층화하고, 계층의 최상층에는 가장 포괄적인 의사결정의 목적이 놓여지며, 그 다음의 계층들은 의사결정의 목적이 영향을 미치는 다양한 구성요소로 구성한다. 그러나 항목간의 우선순위가 거꾸로 되므로 AR법 위 결정모형에 따라 「AR법 위 결정모형」의 목적에 따라 「결정이론 평가모형」에서 계층적으로 선정된 항목들을 계층으로 설명하여 적용한다.

<단계 2> 의사결정 요소들 간의 관계를 보면 관계도로 그림 자료를 수집한다.
<단계 3> 「고유기법(Eigenvalue method)」을 사용하여 의사결정요소들의 상대적인 가중치를 추정한다.
<단계 4> 평가대상이 되는 여러 대안들에 대한 종합순위를 얻기 위하여 의사결정 사항들의 상대적인 가중치를 종합한다.

<단계 5> <단계 4>까지의 과정을 거쳐 도출된 평가항목의 우선순위 점수는 「DBA-AR모형」을 사용하여 계층결합법의 계층조건에 적용하게 된다.

4.3. 「상호영향 결정모형」
<단계 1> 상호영향을 고려하지 않은 초기확률 P_i 및 P_{ji}를 추정한다.

$$P_i^{/1} = P_i + \Delta P_{ji}$$

(4-1)

단, ΔP_{ji}는 양의 경우도, 음의 경우도 있음을 알 수 있다.

이렇게 하여 「초기확률(Initial Probability Table: IPT)」을 만든다.
<단계 2> 각 항목에 대하여 「CIM」을 만든다.
<단계 3> 시뮬레이션을 행하고 그 결과를 「성공 실패표(Success Failure Table: SFT)」에 기입한다.
시뮬레이션은 우선 항목 D중에서 난수표를 이용하여 무작위하게 하나를 선택하고 홀을 P_i에서 발생할 확률로 보급한다. 시뮬레이션 결과, 그 항목이 발생하지 않는 결과가 나온 경우, 즉 실패의 경우에는 「SFT」의 해당행에 0이라 기입하고 계속 진행하며, 그 항목이 발생하는 결과가 나온 경우에는 「SFT」에 1을 기입하여 확률표에서 D_i이의 D_j의 확률 P_i의 값을 $P_i - P_i + \Delta P_{ji}$로 치환한다.

<단계 4> 확률표로부터 D_j행을 제거하고 <단계 2>로 되돌아간다. 이러한 반복을 확률표로부터 항목이 없어지기 전, 전체항목의 시뮬레이션 결과가 정정이상 결과가 정정되기까지 속행한다. 그 결과, 「SFT」의 제1열이제는 항목이 1이거나 0이 되었다.
조기 및 조건부 실험을 100회의 시뮬레이션 과정으로 통해 성공률과 같다 DTA에서 도출된 평가항 목표수에 양질방식으로 결정한다.

3. 2에서 도출한 목표와 실험자를 'CCR-AR모형'에 적용한다.

4. 상대적인 비교를 통해 가중치의 효율성 값을 도출하는 'CCR-AR모형'은 'Primal분석'과 'Dual분석'의 두 부분으로 구성되는데, 먼저 'Primal분석'에서는 목표와 관찰치에 대한 조합 효율성을 도출하는 분석이고, 'Dual분석'에서는 목표와 관찰효율성에 구체적으로 어떤DMU의 기준으로 효율성이 낮게 또는 높게 되는지에 대해 '청조집합(Reference Set)'의 형태로 정보를 제공한다.

5. CCR-AR모형에 적용하는 단계에서 필요한 제약식의 범위는 1)에서 수행한 결과 값을 사용함으로써 '범위(Assurance Region)'를 선정결합의 제약식으로 적용한다.

6. 이상과 같은 (1)~(5)의 과정을 통해서 각 프로세스에 대한 상호관계 집합 효율성을 도출하여 두 선순환을 결정하게 된다.

4. 6. '효율성과 분석모형'

'효율성과 분석모형은 단순화된 분석모형으로서 분리된 4개의 영역을 4개의 'DMU'로 구분하고, 영역간 효율성의 원인이 기술효율성의 절대치, 악연 규모효율성의 문제인지를 규명해주는 단계로 'DEA모형', 'BCC모형'을 적용하여 도출하게 되며, 도시화 차원 <그림 2>와 같다.

![그림 2] 효율성과 분석

'효율성과 분석모형을 통해 프로세스의 불균주변으로 도출되었을 때 그 원인을 파악할 수 있는 정보를 제공받기에 이므로 추후 프로세스의 관리방향을 기술효율성에 맞춤 것인지, 규모의 효율성에 초점을 두어 개선할 것인지 파악할 수 있게 된다.

5. 결론

상호조직적인 프로세스뿐만 아니라 상호영향이 존재하는 프로세스간의 평가를 할 수 있도록 설계된 본 연구의 결과로 미래의 가치가 높은 R&D프로세스 신설이 가능해졌으며 R&D프로세스의 기술적수립의 공간적인 틀로서 신뢰도가 제고되어질 수 있게 되었다. 또한, 프로세스의 비효율 원인에 대한 내부 상태를 파악할 수 있게 됨으로써 기준의 정립방으로 수행할 수 있는 프로세스 관리수준을 획기적으로 높일 수 있는 평가모형의 도움이 마련되었고, 기존의 OR문제, 방법론에서 간과하고 있는 세부화(Factorizing)의 문제를 해결함으로써 더욱 유용한 프로세스 신장평가모형의 제개가 구체되었다.

참고문헌