Burr Expert System을 이용하여 Exit Burr의 최소화를 고려한 
최적 가공 계획 알고리즘의 개발

김치한, 김영진 (경희대학교) 
Ji-Hwan Kim, Young-Jin Kim (KyungHee University)

경기도 용인시 기흥구 시천리 1번지 경희대학교 대학원공학과

Abstract

군형가공에 있어서 열량이선의 가공에서는 절
삭과 가공의 procesing 를 Burr이 미끼는 바가 있으며 이러한 바
가 가공의 정확도를 감소시키고 또한 여과 하러 건강
과정(dehumidity)에 이기시킴으로 인해 작업효율의 감소 및 생산성의 비효율적 낭비를 가져오게 된다.
따라서, 정밀도와 작업효율을 극대화하기 위해서는
여과 정상처리를 최적화하고, Exit Burr의 생상부분을
미래 예측하여 바이 개선을 최소화 할 수 있는 작
업 가공에의를 설계하여야 한다.

기존의 Burr Expert System에서는, 피막제의 단
면형상과 Line과 Arc에서 일한 단한 형상뿐만 아니라,
Line 또는 Arc가 연결되어있는 복잡한 형상에 대해서
도 버를 판별하였다. 그리고, 가공 후 바가 생겨지는
부분을 예측하고, 이에 의한 Exit Angle을 계산하여 이
에 해당하는 기 설계값과 Database에 연하여 생
성된 바의 형태와 크기의 경로를 계산하여 주
다. 그러니, 피막제의 단면형상의 여러 가지 복합
적인 형상으로 이루어져 있는 경우와 다양한 공구
경로까지 고려하여 실제가공과 거의 유사한 형상에
적합할 수 있는 알고리즘으로 개발하였다.

본 논문에서는 이에까지 개발된 다양한 형상에
대한 Exit Burr 판별 알고리즘을 이용하여 설계형상
을 가진 피막제의 다중가공경로 상에서 발생 가능
한 버를 예측하고, 바의 길이나 가공 시간 등을 경
화하여 적절하게 필요한 요소를 추출하여 보
고자 한다.

또한, 이를 이용하여 Face Milling에서의 바 발생
을 최소화 할 수 있는 적절한 가공경로 구문을 제시하여,
작업 효율성을 극대화하는 알고리즘을 Windows 응용 프로그램으로 구현하고자 하였다.

1. 서론

Burr는 접접가공에 공작물의 포서리부분에 발생
하는 것으로, 열량공구의 구돌후에 바가 나와 가공부분이 소형 변형되며 밀려나오거나 광경으로
발생하는 플라스틱란을 말한다. 이렇게 접접의 과
정에서 발생하는 바는 공구의 피막제가 만나는 상태
에 따라 그 형상이 결정되기 마련이다. 공구의 피막제 사
이의 각, 공구의 회전속도, 이속속도, 피막제의 종류
등은 이러한 비가 형상에 결정하는데 결정적인 역할
을 하므로, 설계에 의해서 생성될 단계의 자료를
CAD 및 CAM 데이터에 연계하여 저장하고 효율적
인 알고리즘을 통하여 검토하는 것은 실제 작업에
게 도움을 줄 수 있다.

그래서, 이 과정에서 연구에서는 피막제 형상에
대한 정보를 포함하고 있는 CAD 데이터를 입력하고
이를 통해 복합적인 형상의 피막제에 대합 - 다양한
기하학적 특성의 구조를 반영하되 복합형상 -
비형상 가공의 연구를 수행하였다.

또한, 실제의 CAM 데이터를 이용하여 도입된
현재로 공구의 이동경로를 인식하도록 하였고 단
일경로 및 다중접접경로를 인식하여 이를 실제 가공
상태에 적용할 수 있게 하였다.

이러한 알고리즘을 바탕으로 Burr Expert System
을 개발하였으며, 이 Windows 응용프로그램은 단순한
바의 형상뿐만 아니라 많은 밀도구역을 최적화에 도시
하고 바의 형태를 포함한다. 그리고, 가공상태를
의하여 Exit Angle을 계산한 값과 기존의 설계 비
이를 분류하여 구축한 Database를 프로그램 결과
와 연동하여 Exit Angle에 의해 바가 생성
되는경로를 시각적으로 확인할 수 있도록 하였다.

본 논문에서는 지금까지 개발된 Burr Expert System의 알고리즘을 발휘하여, Face Milling 가공 경
정에서 있어서 Burr를 최소화 할 수 있는 체적 가공 경
로를 제시할 수 있도록 필요한 요소를 제공하고, 공
구가공 경로를 결정할 수 있는 알고리즘을 제시하고자 한다.

2. Burr Expert System

2.1 Burr Expert System의 개요

Burr Expert System은 설계가공에서 Burr가 발생
하는 원인을 기하학적으로 해석하여 Burr의 발생 여
변과 형상 등을 컴퓨터 화면에 도시화하고, 이하
의 Burr 형태를 기 설계값을 저장하고 Database와 연동하여 결과 예측을 가능하게 해주는
Windows Application Program 형태의 절정 시스템
이 다. 즉, 열양가공에 있어서 작업물의 CAD정보와
가공상태의 CAM정보를 인식하여 가공상태의 형상
을 인식하고, 공구의 정보를 인식한 후 해당 작업에
어 Burr 발생을 예측하고 그 주의를 제시해주는
Program 이다.

Burr Expert System은 공구의 정보, 가공상태 그
리고 가공경로 등의 작업정보를 인식하기 위해서
NC 코드가 저장되어있는 CAM 데이터를 입력하면
도, 피막제의 형상 일련까지 해석하기 위해서 DXF 파일로
중복 Line, Circle, Arc 그리고 Spline을 정보를 입력
하여 형상의 기하학적 정보를 추출한다.

이렇게 추출된 정보로 복합형상을 인식하고, 공
구의 이동경로를 인식하여, 이 두 가지 정보로 기하
학적인 태석을 통하여 바의 생성 형태를 판단하게
2.2 복합형상의 인식
Exit Burr 형상의 예측은 각각의 형상의 인식
하는 부분이 매우 중요하다고 할 수 있습니다. 처음 블록8과의 인식에 의해 형상정보가 인식하게 되면 Line, Arc, Circle, Spline, Curve 형태로 인식되어 진다고 하지 않습니다. 그러므로, 각 개별형상의 방향성도 무차원으로 설명되어 있음을 단순으로 이해하는 Exit Burr 형상의 관찰하기가 쉽지 않습니다. 따라서, 각 개개의 형상은 서로 연결되어 있는 Group 별로 구분하여 할 필요가 있고, 이를 Group의 포함 관계에 따라 일관적인 방향형설정이 필요하게 된다[2].

그림 그림은 어떤 것도 서로 연계되지 않는 특성
이 있기 때문에 하나의 Group 내의 CIRCLE, 각
그룹과의 포함 관계에 대해서도 해석하기, 추후 다른
Group 별도의 포함 관계로 판단해주면 된다.
그러나, 연속한 개별형상을 단지 못하게 되면
그룹화를 시키지 못하게 되는데, 이것은 단일하지 않은 형상이 존재하거나, 간섭축 관리에 발생한
보이지 않는 점의 형상이 엄청난, 그룹화를 수행한
Line 등 일기능성이 있다. 따라서, 이들 사용자에 경고하여 형상정보를 수행하게 한다.

그림 그림의 방향형설정이 정의된 Exit Burr
형상에 수행하게 되면, Exit Burr 형태는 각 개
체에 대하여 개별화로 수행되며 이로는 Group의
개별형상이 그룹정보가 되게 된다.

2.3 Multi-Path에서의 Exit Burr 정형 예측

자세한 Milling에서는 NC다.created에 기록되어 있 는 공구의 형상정보가 단양형 일치정보까지 아니라 2차 이상의 절삭을 수행하는 다중 형상정보가 포함될 수도 있다.

Fig. 2는 단일형상정보와 비교하여, 다중정보의
가장 핵심적인 두 가지 방식을 보여준다. 공구의 중
심을 둔 형상은 절삭정보로, 절삭은 수행하지 않고 공구가 이동하는 경로를 나타낸다. 이는 공구형상정보의 나타내는 최소직의 Z계 좌표로 결정된 다[1].

Fig. 3는 Multi-Path(다중경로)에서의 절삭정보 구성

Fig. 3에서 볼 때, 총 두 번의 절삭에서 2차 절
삭의 일부분은 1차 절삭 정보와 2차 절삭 경로가
결합되는 부분 - 이는 1차 절삭에서 절삭점 부분이며
결합선으로 표시되는 부분이 2차 절삭으로 인정
한다. 따라서, 다중 경로의 경우 n차 절삭 후 면적
정보를 그대로 유지하고, 단일 경로와 동일한 형상
이 수행될 때 이전의 절삭정보에 포함된다. 하지만 이 부분을 무시하고 절삭정보는 부분이 Exit
Burr 영역의 관계에 고려하도록 한다.

그러므로, 각각의 절삭정보에 대하여 발생한 배
영을 메모리에 저장해 놓고, 추후 Exit Burr 정보를 검색하는데 적용하게 한다.

2.4 복합형상에서 Multi-Path를 적용한 Exit Burr

Fig. 4는 Exit Burr 경로에서의 Multi-Path 적용 예측
복합형상에서 Multi-Path를 적용하려면, 단일형
상에 대한 Exit Burr 경로를 여러 번 수행해야 한다.
즉, 아래의 Fig. 4.처럼 첫 번째 경로에 대한 Exit
Burr 경로 알고리즘을 수행하고 나 다음 경로에 대해 수행하고, 이에 따라 경로에 대한 Exit Burr 경로 알고리즘을 수행하는 방식으로 Multi-Path의 모든 경로에 대해 검색 알고리즘을 수행하면 된다.

Fig. 5는 위의 3장에서 예시 뿐만 아니라 Multi-Path를 적용한 모델이다. 위의 복합형상에 인식하고, Multi-Path에 대하여 Exit Burr 경로 알고리즘을 적용한 예가 된다.
그림에서도 볼 수 있듯이 이러한 알고리즘을 적용하면, 점비 경로에 따라 악영향이 발생하였다거나 Exit Burr가 생성되지 않았다면 부분이라 하더라도 다층 경로에서는 적용이 되지 않음을 알 수 있다.

3. Exit Burr 최소화를 위한 알고리즘

3.1 Exit Burr 최소화의 목적

바이의 개성을 평가할 때는 각각의 레이아웃 이론과 후처리과정(Deburring)을 이기 시스템으로 인해 적절히 용량의 감소 및 생산성의 비효율을 낮추기 위해서이다. 따라서, 본 연구에서는 Burr Expert System의 알고리즘에 이용하여 CAD 정보와 CAM 정보가 추가된 작업에서 공구의 가공경로의 수치를 통하여 Burr가 가장 적게 발생할 수 있는 경로를 계체적으로 한다.

D. Donsfeld는 Milling 공정시 머침 최소화할 수 있는 공구가공 경로에 대한 연구에서, 경계적으로 공기 가공경로의 평가방안을 따라 시계방향(CW)으로 가공하면 Exit Burr가 거의 발생하지 않는다는 이론을 계체하였다.[9]

그러나, 실제 Face Milling 기계에서는 복잡한 가공경로가 있어서 인원이 많이 드는 정형 Z형 다중 가공할 때 주로 사용한다. 가공물에 비하여 공구의 크기가 비교적 작으나, 가공물의 정형한 형상에 따라 가공하기에 비용을 시간이 너무 많이 투자될 수 있기 때문이다.

따라서, 공구 가공경로의 형태가 Z형이나 X형을 유지하면서, 가공경로의 오프 수치를 통한 최소화 알고리즘을 수립 해보고자 한다.

3.2 Exit Burr 최소화 측정기준

바이의 알고리즘을 수립하기 위해서는, 우선 바이의 부품을 최소화하기 위한 적절한 부품의 측정기준이 있어야 한다. Table. 1.과 같이 바이의 경로를 표현할 수 있는 특징적인 요소로는 바이의 측 깊이, 바이 크기, 바이의 모양(Shape) 등이 있다.

<table>
<thead>
<tr>
<th>요소</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>깊이</td>
<td>mm</td>
</tr>
<tr>
<td>크기</td>
<td>Width (mm), Height (mm), Degree (°)</td>
</tr>
<tr>
<td>모양</td>
<td>Type A, Type B, Type C</td>
</tr>
</tbody>
</table>

Table 1. Burr를 표현할 수 있는 특징적인 요소

개의 측 깊이는 바이의 알고리즘 수행 후 제품에 저장되어 있는 바이의 정보를 대체 측 깊이를 계산할 수 있다. 바이 크기의 크기는 최상의 결합을 위해 선택된 바이 크기가 목표로 재료의 경로에 따라 달라질 수 있는데, 이는 기 실험과 Database를 참조하여 알아낼 수 있다.

기상 중요한 요소는, 바이 계거(Deburring) 하는 소소하는 부품 또는 시간 등을 줄일 수 있다. 바이 최소화의 경제적인 목적은 후처리(Deburring) 비용의 최소화이며 가장 중요한 요소로 볼 수 있다. 그러나 후처리 비용은 경험치 이므로 정량화 또는 수치화하기 어렵며, 바이 위치와 형태와 따라 비용이 달라질 수 있기 때문에 본 연구에서는 바이 측 깊이를 최소화하면서 후처리 비용이 상대적으로 큰 부분에 대하여 가중치를 부여하고자 한다.

그 밖의 고려요소로 가공시간 또한 중요한 요소로 생각할 수 있는데, 본 연구에서 수행하고자 하는 Face Milling의 특성상 X형과 Z형의 가공경로의 경우 가장 긴 시간의 차이가 그리 크지 않으므로, 본 연구에서는 고려하지 않는다. 그러나, 주로 가공시간이 차지하는 중요성을 따라 재료조직을 추가시킬 수 있도록 함이 필요하다.

3.3 Exit Angle과 최소화의 관계

바이의 크기, 모양 크기 후처리 등 동작정도는 서로 연관성을 갖고 있다. 가장 큰 연관성을 털어 끌어내는 것이 Exit Angle이다. Exit Angle의 크기와 크기에 따라 구체가 크거나, 모양의 경로가 없어지며, 후처리 비용이 많이 들어가게 된다. 그러나, 그 경로가 공기의 가공경로의 형태에 따라 달라지는 경우, 예를 들어 그림 6과 같이 SM45C 재료를 Tool 1으로 가공하였을 경우 Exit Angle이 120°가 넘어가면서 바이 크기가 크고 모양이 커지게 된다.[9]

<table>
<thead>
<tr>
<th>부품 샘플</th>
<th>Load angle (°)</th>
<th>Radial rake angle (°)</th>
<th>Axial rake angle (°)</th>
<th>Diameter (D)</th>
<th>Spur shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool 1</td>
<td>45°, -5°</td>
<td>20°</td>
<td>125(mm)</td>
<td>square</td>
<td></td>
</tr>
<tr>
<td>Tool 2</td>
<td>0°, 5°</td>
<td>15°</td>
<td>125(mm)</td>
<td>triangle</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Tool geometry

Fig. 8. Exit Angle이 따른 바이 크기(Shape)[9]

따라서, 폐기물의 폭에 따른 바이의 크기 변화.
4.1 페어링 브urr에 대한 Burr Expert System 프로그램 설명

Fig. 8은 Burr Expert System 프로그램의 초기화

4.2 접착과정 변환과 Exit Burr 생략

DXF 파일에서 형상 데이터를 입력받고, NC 파일에서 접착데이터를 포함한 CAM 데이터를 입력받은
그려져 프로그램의 가공경로에 따른 Exit Burr 단편

가공경로가 단일경로가 아닌 다중경로일 경우, 변환하지 않은 사각형의 Exit Burr 부분을 바꾸며
그려져 Exit Burr 부분에 바스스케어를 가져 간 마우스 캐시 모양이 + 형태로 바뀌게 되며,
그 부분을 둔적하게 되면 그 부분의 Exit Burr에 대한 상세 정보를 결과화에서 얻을 수 있다.

![그림 10. 특정부분에서 발생한 Exit Burr의 형상정보 (기 설립결과 Database와 연동)](image)

그림 10과 같이 Exit Angle 계산 고정을 실행하여 사용하기가 편리한 부분의 Exit Angle값을 계산하고, 그 수치를 Database와 연동하여 저장된 Exit Burr 형상의 모습을 결과화로 보여준다. 이 Database는 실현을 통하여 공구의 상태, 사정에 의한 Exit Angle의 값, 동의 조건에 따라 생성되는 Burr의 모습과 정보가 담겨있다.

4.3 최소화를 위한 Exit Angle 분포

Burr Expert System에서는 Burr가 발생한 특정부분의 Exit Angle을 계산할 수 있다. 이를 이용하여 발생한 Burr의 Exit Angle의 분포를 도시하는 기능을 추가하였다.

![그림 11. Exit Angle의 분포를 Color로 도시](image)

또한, Critical Angle보다 큰 Exit Angle의 충돌률을 계산하여 상대적으로 나타내었다. 이를 이용하여 Critical Burr Length의 길이가 최소가 되는 공구의 가공경로를 제시할 수 있다.

5. 결론 및 향후계획

본 연구에서는 Burr Expert System의 비형성 예측 알고리즘을 개발하였고, 이를 이용하여 비형성 예측이 가능한 알고리즘을 수립하여 최적의 공구 가공경로를 제시할 수 있는 기반을 구축하였다. 또한, 이를 이용하여 Exit Angle의 분포를 예측할 수 있는 Burr Expert System의 기능을 추가하였다. 이러한

과정은 궁극적으로 Milling 가공시 발생되는 Exit Burr을 최소화하여 작업효율 증대 및 생산비용의 효과적 사용을 목적으로 한다.

향후 연구 과제로는 현재 제안한 비 경사와 알고리즘을 정립하여 Windows 운영상태로 개발하고, conventional Tool-path에 대하여 다양한 절단경로를 탐색하여 그 중에서 Exit Burr를 최소화 할 수 있는 최적의 공구 가공 경로를 수록하는 Burr Expert System의 최적화 시스템을 계획중이다.

6. 참고문헌
1. 김영진, 이성열, 김영진, "밀링의 특성상에 대한 비형성 예측의 기법학적 해석", 한국 CAD/CAM고려 논문집, 2002
2. 김지철, 이상범, 김영진, "밀링의 형성 및 다양성의 해석 Exit Burr 관별 알고리즘 개발", 대한 산업고려 추계고려학회 논문집, 1995
3. 홍성주, 고형렬, "매인 밀링 가공시 출구가 정형에 관한 연구", 한국철도공학회, 제19권, 제83권, pp.55-62, 2002