신뢰성 있는 커널 컴포넌트를 이용한
마이크로커널 기반 시스템 콜 인터포지션 기법

김영필*, 유혁*
*고려대학교 컴퓨터학과

e-mail : ypkim@os.korea.ac.kr

Microkernel-based System Call Interposition
Mechanism using Reliable Kernel Component

Young-Pill Kim*, Hyuck Yoo*
*Department of Computer Science & Engineering, Korea University

요 약

시스템 콜 인터포지션 에러나는 접근 탐지 및 접근 제어와 같은 시스템 보안 기능을 강화하기 위해서 사용하는 방법이다. 현재까지 알려진 시스템 콜 인터포지션의 구현 방법은 크게 라이브러리 기반, 커널 기반 그리고 유저레벨 프로세스 기반의 접근방식이 있다. 기존의 방식들은 대부분 병용적인 모노리틱커널에 적용되어 사용되고 있으며, 최근에 보안 운영체계로 개발되고 있는 마이크로커널 방식의 시스템에서도 적합하지 않다. 본 논문에서는 기존에 연구되었던 시스템 콜 인터포지션 기반 시스템 콜 인터포지션을 위한 에러나의 기반으로 되는 커널 컴포넌트들을 안전하게 관리하는 방법을 제안하고 있다. 제안된 에러나들은 마이크로커널 위에 모니터 서버를 두고, IPC 가 수행될 때 특정 시스템 콜을 직접 IPC 콜을 이용하여 감시하는 방식을 취하고 있다.

1. 서론

사용자가 응용프로그램 통해서 커널이 관리하는 시스템 자원들을 이용하기 위해서는 운영체제가 제공하는 시스템 콜을 호출하여야 한다. 시스템 콜은 정상적인 운영프로그램 모두 동일한 페턴을 보이게 되는데, 이러한 정상적인 페턴과 비정상적인 경우의 페턴 분석은 침입 탐지를 위한 자료로 이용할 수 있다. [1] 이러한 분석이 가능하다면 시스템 콜을 실시간으로 감시할 방법이 필요하다. 그리고 분석을 통해 침입 탐지가 되면 그 응용프로그램의 시스템 콜 요청은 거부해야 한다.

본 논문의 내용은 다음과 같다. 2장에서는 기존에 제시 되었던 시스템 콜 인터포지션 방식들을 기술하고, 3장에서는 제안하는 마이크로커널기반 시스템 콜 인터포지션 기법의 원리 및 장식 방식에 대해서 설명한다. 4장에서는 제시하는 방식과 기존 방법들의 비교
2. 관련 연구

악의적인 사용자들의 공격 유형은 여러 가지가 있지만, 대다수의 방법들은 시스템을 공격하는 시스템 몹을 사용할 수밖에 없다. 예를 들어, UNIX의 경우, 침입자는 루트 권한을 가지고 있는 셀을 실행하거나, /etc나 /var 등의 중요한 디렉토리 안의 파일을 수정할 수 있다. 프로그램을 실행하거나, 파일 조작을 하는 모든 과정은 시스템 몹을 거치야 한다. 따라서 외부 공격으로부터의 대응 및 방지를 위해서 시스템 몹을 실시간적으로 감시해야 한다. 이를 위해서 시스템 몹이 발생했을 때, 시스템 몹의 파라미터를 검사하고 시스템 몹 요청을 수락하거나 거부할 수 있는 메커니즘을 필요하다. 이러한 메커니즘을 시스템 몹 인터포지션[4,5,6]이라고 한다. 그림 1은 시스템 몹 인터포지션의 개념을 잘 보여주고 있다.

![System Call Interposition Diagram](image)

그림 1 System call interposition

1) 라이브러리 기반 접근 방식

라이브러리기반의 접근 방식은 감시 시스템의 확장 코드들이 시스템 몹의 래퍼(wrapper) 함수들로 수정하여 추가되는 방식이다. 일반적으로, 시스템 몹은 libc와 같은 라이브러리 안의 레퍼먼트에서 트랩과 같은 소프트웨어 인터럽트를 호출하게 된다. 따라서 시스템 몹 호출 부분에 앞에 코드를 쉽게 추가할 수 있다. 라이브러리 기반의 접근 방식이 가지는 장점은 커널을 수정하거나 커널 내부에 들어가 필요가 없으므로 구현과 기능 확장성이 뛰어난다는 것에 있다.

2) 커널 기반 접근 방식

커널 기반 접근 방식은 시스템 몹 인터포지션을 운영체제 커널 안에 구현하고, 프로세스를 감시하기 위한 모든 확장 코드들이 커널 모드에서 수행되는 방식이다. 시스템 몹은 반드시 커널 내부에 있는 확장 코드를 거치게 되므로 시스템 몹을 중간에서 가로채는 오버헤드가 매우 적다.

3) 유저레벨 프로세스 기반 접근 방식

유저레벨 프로세스 기반 방식은 시스템 몹의 인터 포지션을 커널에서 수행하고 감시시스템은 유저레벨 프로세스에서 구현한 방식이다. 감시 대상이 되는 프로세스를 감시하기 위한 메커니즘은 대부분의 UNIX 시스템에서 제공하고 있는 ptrace, strace, /proc 등을 이용한다. 유저레벨 감시 시스템을 이용하여 첨단 탐지에 대한 유연한 플랫폼을 제시하고 이를 통해서 확장성을 제공한다.

3. 마이크로커널 기반 시스템 몹 인터포지션 메커니즘

본 논문에서는 마이크로커널 상에서 수행하는 응용 프로그램의 시스템 몹을 감시하고 악의적인 공격을 찾아 낼 수 있는 시스템 몹 인터포지션 방법을 제안하고 있다.

본 연구에서 대상으로 하고 있는 시스템은 마이크로커널 구조의 운영체제이다. 마이크로커널은 물리 메모리나 하드드라이브 등의 자원에 대한 저수준 관리, IPC(Inter Process Communication)와 동기화 등 운영체제의 필수기능을 보유하고, 대부분의 운영체제 서비스들이 유저레벨의 서비스로 분산된다. 이로 인하여 운영체제의 기능에 대한 확장성이나 유연성을 가진다. 마이크로커널 상에서 수행되는 서비스들은 단일 서비스 모델과 다중 서비스 모델로 나눌 수 있다. 단일 서비스 모델은 마이크로커널에서 UNIX의 모든 기능을 갖춘 UNIX 서비스가 동작하는 구조이다. 다중 서비스 모델은 유니버설 서비스가 각각의 서비스로 동작하는 구조이며, 스케일러 서비스, 외부 레이어, 각각 메모리 관리 서비스 등들이 존재할 수 있다.

본 논문에서는 단일 서비스 모델 마이크로커널에서 시스템 몹 인터포지션 기법을 사용하는 것이다. 그림 2는 본 논문에서 제시하는 마이크로커널 기반 시스템 몹 인터포지션 메커니즘을 보이고 있다.
그림 2 마이크로커널 기반 구조

그림 2에서 알 수 있듯이 응용 프로그램에서 발생하는 시스템 콜은 라이브러리함수를 통해 IPC로 변환되어 UNIX 서비스로 전달하게 된다. 마이크로커널이 UNIX 서비스의 시스템 콜 서비스를 위한 IPC 요청이 들어오게 되면, 컨텍는 UNIX 서비스에게 그 요청을 전달한다. 이와 더불어 기존의 시스템 콜 인터포지션 메커니즘에서 감시 시스템에 해당하는 보안 모니터에게 현재의 요청에 대한 정보를 함께 전달하게 된다. 이러한 전달은 보안 컨포넌트를 통해서 수행된다. 다음은 본 논문에서 제안하는 마이크로커널 기반 시스템 콜 인터포지션 메커니즘에 관련하는 구성 요소들에 대해서 기술한다.

1. 보안 컨포넌트

마이크로커널에 내부에 있는 보안 컨포넌트는 응용 프로그램으로부터 요청받은 시스템 콜 요청을 보안 모니터와 UNIX 서비스에 전달하는 역할을 한다. 이러한 컨포넌트를 요구하는 기능은 다음과 같다.

- 감시 대상 시스템 콜의 분류

패턴 분석을 하기 위하여 하나의 응용 프로그램에서 호출하는 모든 시스템 콜에 대한 기록을 남기는 것은 성능의 저하를 유발할 수 있다. 따라서 감시 대상의 시스템 콜을 선정하고 해당 시스템 콜이 요청되었을 경우 보안 모니터 서비스로 메시지를 보내야 한다.

- 중요한 서비스의 보호

보안 기능의 많은 부분이 구현되는 보안 모니터나 UNIX 서비스는 사용자 레벨의 서버가 내부에 사용자 외에 복구할 수 있도록 제체를 할 수 있어야 한다. 따라서 kill 과 같은 시스템 콜을 통해서 중요한 서버를 중단내야 한다면 이 요청을 거부해야 한다.

- 확장성과 신뢰성

보안 컨포넌트는 컨터 컨포넌트이며 필요시 확장이 가능해야 하는데 특권레벨의 컨터 컨포넌트에서 수행되므로 신뢰성 역시 보장되어야 한다. 확장성을 위해서 컨터 컨포넌트를 사용자 레벨에서 구현하고 실행 시에 컨터 내에서 실행하는데 신뢰성을 주기 위해서 가상 메모리에 기반한 고립성을(enforcement) 기법을 적용한다. [8]

이것은 컨터 메시지 테이블의 일부를 사용하여 컨포넌트를 보호한 메모리 영역에서 실행하게 한것으로 컨포넌트 자체의 릴(heap)과 스택(stack), 그리고 단 하나의 컨터 간의 간접적 물리적 접근을 할당하는 것으로 이루어져 있다. 컨포넌트와 컨터 간의 데이터 이동은 경량화한 컨포넌트 간 통신을 이용하여 컨포넌트가 컨터 메모리에 직접 쓰기 하는 것은 막아 오류나 버그에 의한 피해로부터 보호될 수 있게 된다.

2. 보안 모니터

보안 모니터가 해야 하는 기능은 시스템 콜의 감시 및 기록이다. 감시에 해당하는 사랑은 시스템 콜의 파라미터 분석이 요구되며, 기록에 필요한 정보들은 시스템 콜이 발생한 시점과 요청한 응용 프로그램의 정보, 사용자 및 서비스 인증 서비스에 요구되는 정보 등이 있다. 이러한 기능은 시스템 코파일과의 통합이 요구되기에 때문에, 자주 사용되는 것보다는 특정한 사례만 타이핑 수행하는 것이 효과적이다. 따라서 보안 모니터 서비스는 추가적으로 실행되는 사용자 레벨의 서비스를 생성한다. 사용자 레벨의 서비스를 실행되더라도 보안 컨포넌트에 의해 보호되므로 신뢰성을 보장할 수 있다.

3. 마이크로커널 중심의 시스템 콜 메커니즘

포모러커널 기반의 시스템에서는 시스템 콜이 발생하면 소프트웨어 인터프리트에 의해 컨터 내부의 핸들러가 호출되고, 이후에는 시스템 콜 파라미터에 따라서 세부적인 각각의 서비스 런트이 수행된다. 그러나 마이크로커널 기반의 구조에서는 시스템 콜 런트이 해당하는 런트이 유저 레벨에서 수행될 때에 존재하기 때문에 IPC를 이용해야 한다. 이러한 구조에서 응용 프로그램과 UNIX 서비스는 모두 유저 레벨의 프로세스이며, 응용 프로그램이 UNIX 서비스에 시스템 콜을 요청하려면, 내부적으로는 모든 마이크로커널이 중재하는 IPC 메커니즘으로 변화가 되어야 한다. 이것으로 응용 프로그램의 트세의 투명성(transparency)을 보장할 수 있다.

응용 프로그램에서 시스템 콜의 libc 등의 라이브러리를 통해서 호출하면 내부적으로 소프트웨어 인터프리트를 발생시킨다. 그러나 이 시스템 콜이 해당하는 핸들러는 UNIX 서비스 내에 존재하므로 일종의 RPC(Remote Procedure Call)가 이루어져야 한다. 다음 그림 3은 이러한 상황을 보여주고 있다.

그림 3 마이크로커널 기반의 시스템 콜
소프트웨어 인터럽트 즉 트랩(trap)이 발생하면, 마이크로코어들이 제어권을 가진다. 마이크로코어들은 각 유지 프로세스의 주소 공간에 사정된 트랩 헌들러를 호출한다. 트랩 헌들러는 UNIX 서버의 시스템 콜 헌들러를 호출하기 위해서 IPC 메시지를 트랩의 내용을 변환하고 응답을 기다린다. 이후, UNIX 서버로부터 응답을 받게 되면 트랩 헌들러에서 libc로 복귀하여 계속 수행한다. 위와 같은 방법이 Mach나 L4Linux 같은 마이크로코어에서 트램프링(trampoline)[7]이라는 방법을 통해서 사용된다.

4. 비동기 IPC

시스템 콜 메커니즘에 관련된 IPC는 UNIX 서버로부터의 응답이 있을 때까지 기다려야 하는 동기 IPC 메커니즘을 사용한다. 이러한 동기 IPC는 메릴 박스나 세마포어 등을 이용하게 된다. 하지만 보안 컨포넌트에서 보안 모니터링 메시지를 전달할 때는 불필요한 임계시간을 없애기 위해서 메시지 큐를 이용한 비동기 IPC를 이용해야 한다. 이런 방법을 사용함으로 시스템 콜 모니터링에 따른 오버헤드를 감소시킬 수 있다.

4. 비교 및 분석

라이브러리 기반 접근 방식은 레퍼런스를 가리지 않고도 int 0x80 등을 이용하여 시스템 콜을 직접 호출할 수 있어, 프로그램에 관련된 응용프로그램에서 쓰기에 적합하지 않다. 이로 극복한 커널 기반 접근 방식은 모든 확장코드가 커널 안에 들어가야 하므로, 커널의 많은 수정이 필요하다. 또한 확장 코드를 쉽게 고칠 수 없기 때문에 확장성과 유연성이 떨어진다. 또한 확장 코드의 커널 레벨에서 동작하므로, 잘못 작성된 코드는 시스템 전체의 지향을 줄 수 있다. 유저레벨 프로세스 기반 방식은 위의 두 가지 방법의 장점을 소유하였지만, 시스템 콜 인터셉션을 위한 부가적인 오버헤드가 존재한다. 이는 ptrace나 strace와 같은 레벨의 시스템 콜을 사용하므로 유저레벨 감시 시스템과 감시 대상 프로세스 간에 문맥 전환이 발생하기 때문이다.

본 논문에서 제시하는 방법은 유저레벨의 보안 모니터 서버를 이용함으로 유저레벨 프로세스 기반 방식의 장점을 수용하고 있다. 또한 마이크로코어 내부의 IPC 를 이용하므로 레벨의 시스템 콜이 필요 없고, 비동기 IPC와 주기적인 보안 모니터의 서비스를 통해서 시스템 콜 감시에 따른 오버헤드를 최소화하게 된다.

5. 결론

마이크로코어 기반의 시스템은 확장성이나 기능성, 유연성 등의 장점을 가지고 있기 때문에 다양한 정책을 필요로 하는 정보보안 운영체계에서 적합한 구조이며 그 때문에 보안 운영체계 연구에 많이 사용되곤 있다. 본 논문에서는 응용 프로그램에서 악의적인 공격을 시도하는 것을 탐지할 수 있는 메커니즘인 시스템 콜 인터포지션을 마이크로코어 기반의 시스템에서 적용하는 방법을 제안하였다. 본 논문에 제시하는 마이크로코어 기반 시스템 콜 인터포지션 방법은 기존의 방법들의 장점과 보안을 고려하면서 오버헤드를 최소화하기 위해 노력하였다. 이 메커니즘을 이용하여 마이크로코어 기반의 침입 탐지 시스템을 구현하는데 큰 도움을 줄 수 있으며 그 성능도 향상 할 수 있다.

참고문헌

