적장: 나수균 · 전제명

Biomechanics of shoulder

왈레스기념 침례병원

임 문 섭

Shoulder complex

- · Sternoclavicular
- · Acromioclavicular
- · Glenohumeral
- · Scapulothorcic

1. Sternoclavicular joint

- · Ligamentous constraints
 - Interclavicular lig: superior
 - Sternoclavicular lig; anterior > posterior
 - Costoclavicular lig: inferior

Motion and constraint

- 6 actions occur
 - elevation
 - depression
 - protrusion
 - retraction
 - upward rotation
 - downward rotation
- approximately 35 of upward rotation
- a similar 35 of anterior and posterior rotation
- up to 45 to 50 axial rotation
- the costo-clavicular ligament is believed to be the most important single constraint in limiting motion

2. AC joint

- · Articualr surface
 - Not perfectly congruent
 - Presence of a meniscus
 - Acromial surface is flat or slightly convex
- · Ligamentous structure
 - Conoid ligament;

- the biomechanical data have explained that the conoid ligament must be intact to prevent even slight displacement.
- Trapezoid ligament:larger, longer, and stronger
- AC capsule

Motion and constraint

- 3 axes of rotation
 - AP rotation of clavicle; 3time than SI rotation
 - Conoid lig
 - Trapezoid lig.
 - Ant and post AC lig
 - SI rotation
 - Medial conoid lig; superior constraint
 - Ant and post AC lig. And trapezoid
 - AP(inferior-superior) axial rotation
 - Conoid lig. Constraint both motion
 - Anterior rotation is greater than posterior rotation
 - 5~8° motion is possible
 - slight displacement is limited by the AC lig, but large displacements are resisted by CC lig

Motion of the clavicle

During arm elevation

- · 30° clavicle elevation
 - 10° forward rotation during first 40°
 - 15~20° rotation at terminal arc
- · axial rotation; 40°
- · by Rockwood and green
 - less than 10° rotation of clavicle
 - 30° axial rotation on SC joint
 - clinically
 - SC joint ankylosis; 90° elevation of arm
 - Clavicle fixation: minimum loss of arm elevation

3. Gelenohumeral and scapulothoracic joint motion Description of joint motion

- · Sliding: pure translation of moving segment
- · Spinning:opposite of sliding
- · Rolling; moving and fixed segment
- · ICR (instantaneous center of rotation)

I. Basics for Shoulder Surgery

직장: 나수균·전제명

1) Shoulder motion

- · Resting posture
 - Scapular
 - Anteriorly 30° rotated
 - Upward 3°
 - Tiled forward 20°
 - Humerus
 - 30° retroversion
- · Articular surface and orientation
 - Humerus
 - Upward tilt 45°
 - Retroverted 30°
 - Glenoid
 - Slight upward tilt 5°
 - Retroverted a mean of 7°
 - In coronal plane, articular surface arc; 75°
 - 1/3 of humeral head surface is in contact with the glenoid;
 - glenohumeral ratio -0.8~0.6
 - surface ration of G and H: 1:4.3 without labrum
 - surface ration of G and H: 1:2.8 with labrum

Arm elevation

- Early descriptions
 - GH motion as first 90°, followed by ST rotation
- Poppen and Walker
 - 4:1 GH: ST ration during first 25°, after that 5:4 rotation
 - average overall 2:1
- Doody: linearity
 - ST: GH ration 7:1 during first 30°, after that 1:1 from 90 to 150° elevation
- Bergmann
 - During the first 30°; variable greater motion at GH joint
 - Last 60° : equal GH and ST motion
- Harryman
 - Total arc of elevation GH: ST is 2:1
- · Scapular anterior rotation
 - about 15° AP rotation of an arc occur
 - 6° anterior rotation during first 90° elevation
 - 6° posterior rotation occur next elevation

- 20° of forward tilt referable during elevation
- · after total shoulder arthroplasty; ratio change 2:1 to 1:2

External rotation of the humerus

- · Obligatory external rotation of humerus is necessary
 - Tuberosity impingement with CA arch is cleared by external rotation
 - Inferior lig. Of GH joint loosened by external rotation
- The plane of maximum arm elevation was shown to occur 23° anterior to the plane of the scapula
- Elevation in any plane anterior to the scapular plane required external rotation of humerus, and maximum elevation was associated with 35° external rotation
- · Pearl et al.
 - In vivo measurements
 - Maximum elevation was achieved with the humerus just behind the scapular plane
- · Combining the motion of elevation sequence
 - 1. GH motion
 - 2. SC and AC rotation with elevation of scapula
 - 3. Scapula pivots upward around the AC joint

Center of rotation

- · Center of GH rotation defined as a locus of points situated within 6 ± 2 mm of the geometric center of head
- · Center lie 8 mm behind and 6 mm below the intersection of the shaft and head axes

Spinning a

- Multiple center theory
 - Example
 - 3 mm upward translation during first 30° abduction
 - 1 mm additional translation after 30° elevation

Clinical Relevance

- · True AP radiograph of GH joint is taken 30° oblique
- · External rotation with maximum arm elevation-frozen shoulder
- · Flexion is accomplished by internal rotation
- · Potential for ST motion- arthrodesis, frozen shoulder
- · Understanding the axis of rotation- prosthetic replacement
- · Shoulder abduction force direction- prosthetic design
- · Superior translation of humeral head in RC deficient shoulder
 - Directed resultant vector with initiation of abduction by deltoid

I. Basics for Shoulder Surgery

- 적장: 나수균 · 전제명
- Lack of soft tissue interposition
- Dislocation of LHB
- Degeneration of infraspinatus muscle

2) Constraints

Static constraints

Dynamic stabilizer

1. Static constraints

- · Articular contribution to glenohumeral stability
 - The glenoid articulation 7° retroverted
 - Dimentional relationship:
 - -0.75 in sagittal plane
 - 0.6 in transverse plane
 - 25~30% of humeral head is covered by glenoid surface
 - Glenoid labrum increases the area and depth of glenoid
 - 1/3 of humeral articular surface
 - 40% of radius of a typical 44 mm humeral prosthesis
 - translation force to dislocation humeral head decreased 20% after removal of labrum
 - The joint contact area and position change
 - Contact point moves forward and inferior during internal R
 - Contact point moves superior during elevation
 - Contact point moves posteroinferior during external R
 - The maximum contact area is obtained at 120° elevation
 - With arm elevation: contact surface move superocentral and posterior
 - The slight 5° superior tilt of glenoid surface prevent inferior subluxation
 - Intra articular pressure

· Capsular and ligamentous contributions to static shoulder stability

- Force of dislocation; 2000 N
- The tensile strength of anterior capsule (30~40years); 56.5 kg
- The anterior shear force has been calculated to be 42 kg
- Coracohumeral lig
 - The function of lig. very controversial
 - Rotator interval?
 - It stablize the shoulder indirectly through maintaining the intraarticular pressure

- Superior glenohumeral lig
 - Passive resistance to inferior subluxation or dislocation
 - Important inferior stabilizer
 - SGHL and ant. CHL strain: Adduction and external rotation
 - SGHL seems to have similar function with CHL
- Middle
 - Major constraint to anterior humeral dislocation;
 - Adduction and neutral R-Debski et al
 - Abduction and neutral R with ant. of IGHL Debski et al
 - Taut with position of abduction and external R
 - Lax with neutral and internal R: regardless of abduction
 - Maximum strain with external R with lower angle abduction
- Inferior
 - Posterior band and anterior band
 - Anterior band most tight; abduction and external R
 - Posterior band most tight; abduction and internal R
 - The most important anterior stabilizer in 90° of abduction and external R
 - Abduction and neutral R: SGHL+MGHL=IGHL
 - External R: SGHL+MGHL=2×IGHL
 - The major static stabilizer of the shoulder joint consists of the capsular-ligamentous complex, with the IGHL being the most essential component of the complex

2. Dynamic stabilizer

- · Mechanism of stabilization by muscle
 - 1. Passive muscle tension
 - 2. Compression of the articular surface
 - 3. Dynamic elements causing secondary tightening of static constraints
 - 4. Barrier effect

· Rotator cuff

- Passive muscle tension
 - Subscapularis is important as an anterior barrier to anterior dislocation
 - 0 to 45° abduction; Primary anterior stabilizer-subscapularis
 - 90° abduction; IGHL
- Dynamic contraction
 - Importance of muscle balance
 - Supraspinatus: