Computational Method for Searching Human miRNA Precursors

인간 miRNA 전구체 탐색을 위한 계산학적 방법

  • Nam, Jin-Wu (Graduate Program in Bioinformatics, Center for Bioinformation Technology) ;
  • Joung, Je-Gun (Graduate Program in Bioinformatics, Center for Bioinformation Technology) ;
  • Lee, Wha-Jin (Graduate Program in Bioinformatics, Center for Bioinformation Technology) ;
  • Zhang, Byoung-Tak (Graduate Program in Bioinformatics, Center for Bioinformation Technology, Biointelligence Laboratory, School of Computer Science and Engineering Seoul National University)
  • Published : 2003.10.31

Abstract

본 논문은 진화 알고리즘(Evolutionary algorithm)의 기법중의 하나인 유전자 프로그래밍(Genetic programming)을 이용하여 miRNA 유전자를 발굴하기 위한 알고리즘을 소개하고 있다 miRNA는 세포내에서 유전자의 전사를 중지시킴으로써 유전자의 발현을 직접적으로 조절하게 되는 작은 RNA 집단 중의 하나이다. 그러므로 miRNA를 유전체 데이터에서 동정해내는 작업은 생물학적으로 상당히 중요하다. 한편 유전체 데이터에서 miRNA를 동정해내는 알고리즘은 생물학적 실험에서의 시간과 비용을 상당히 절감할 수 있으며, 생물학적으로 miRNA를 동정하는 많은 어려움을 덜어주게 된다. 하지만 계산학적으로 miRNA의 동정은 1차 염기서열상의 통계적인 중요도가 부족하여 기존의 유전자 예측 알고리즘을 적용하기에는 어려움이 있다. 따라서 본 연구에서는 miRNA의 염기서열보다는 2차구조에서 더 많은 유사성을 갖는다는 점을 착안하여, 2차구조내에서 공통적인 구조를 찾아내고, 그 정보를 이용하여 miRNA를 동정해내는 방법으로 접근하였다. 이 알고리즘의 성능평가를 위해 우리는 test set을 이용하여 학습된 모델의 특이도(= 34/38)와 민감도(= 38/67)를 계산하였다. 평가결과 본 알고리즘이 기존의 miRNA 예측 프로그램보다 높은 특이도를 갖고 있으며, 유사한 수준의 민감도를 갖고 있음을 보여 주고 있다.

Keywords