A Face Recognition System Robust to Variations in Lighting

조명변화에 강인한 얼굴인식 시스템

  • 이은주 (전남대학교 컴퓨터정보통신공학과) ;
  • 김진철 (전남대학교 컴퓨터정보통신공학과) ;
  • 박성미 (전남대학교 컴퓨터정보통신공학과) ;
  • 이배호 (전남대학교 컴퓨터정보통신공학과)
  • Published : 2003.11.01

Abstract

얼굴인식은 동일 사람의 얼굴이라도 조명변화나 얼굴 표정변화에 따라 매우 다른 영상들로 나타나기 때문에 매우 어려운 문제이다. 본 논문에서는 조명변화에도 강인하고 얼굴영상에 대해 높은 얼굴 인식률을 얻기 위해 2D-HMM(Hidden Markov Model) 얼굴인식 방법을 제안하고 실험하였다. 제안된 방법은 조명변화에 대해서 조명변화 함수인 $\delta$(delta) 함수를 0, 40, 60, 80으로 변화해 가면서 이미지 보정을 실험하였으며, 계산의 복잡성을 줄이고 얼굴영상에 대한 높은 인식률을 얻기 위해 기존의 픽셀값 대신에 2D-DCT 계수를 관측벡터로 사용하였다. 시스템의 성능을 평가하기 위해 정량적 평가방법은 FAR(False Accpt Rate)와 FRR(False Reject Rate)를 측정하여 비교하였으며, 기존의 얼굴인식 방법인 PCA, 1차원 HMM과 비교분석하였다. 실험결과 2D-HMM의 경우 FAR(False Accept Rate)가 5.08%로 ID-HMM 5.18%, PCA 10.16%보다 높은 성능을 보였으며, FRR(False Reject Rate)의 경우에도 0.01%로 10.16%인 PCA보다 좋은 성능을 보였다. 이로서 조명변화에 대해서는 PCA보다 2D-HMM 얼굴인식 방법이 우수함을 알 수 있었다.

Keywords