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Nonlinear Analysis of Cable-Stayed Bridges Using Energy Method
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ABSTRACT

This paper presents an energy method for the analysis of the in—plane ultimate load capacity of cable—
stayed bridges considering deck and pylon connection. The potential energy of the whole bridge, including
bridge deck, stayed cables, and pylons, and the work done by external loads are considered in the
development of the bridge energy equation. Both geometric and material nonlinearities are taken into
account in the analysis. The method is simple to use and has a high convergence rate.

1. INTRODUCTION

Under the action of external loading, the stiffening girders and pylons of cable—stayed bridges are
subjected simultaneously to axial compressive forces and bending moments. They work as beam—columns
and should be analyzed by the theory of beam—columns (Chajes 1974). As cable—stayed bridges possess
large spans and are very slender, the analysis of such bridges using the theory of beam—columns is very
complicated. Due to the complexity of the theory of beam~columns, the stability of stiffening girders, pylons,
and the whole cable—stayed bridges has usually been checked by the bifurcation stability theory.

Tang (1976) first derived and calculated the buckling load of cable—stayed bridges using an energy
method. Seif and Dilger (1990) conducted in—plane nonlinear analysis and collapse load calculation of
prestressed concrete cable~stayed bridges by finite element method. Ermopoulos et al. (1992) performed
an elastic stability analysis of a cable—stayed bridge with two pylons by the finite element method. Yan
(1994) carried out the analysis of the in—plane ultimate load capacity of long span steel cable—stayed
bridges by the finite element method. However, most of the researchers employed the finite element method
to carry out the investigation of in—plane stability of cable—stayed bridges. All of the reported research by
the energy method is limited to analyze buckling load of cable—stayed bridges by the bifurcation stability
theory.

Because the general finite element packages are usually not convenient or cannot conveniently handle the
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special features of cable—stayed bridges, it is desirable to develop a special procedure for cable—stayed
bridge analysis. The purpose of this paper is to present an energy method for analysis of the in—plane
stability and determination of the overall stability limit load of cable—stayed bridges.

2. METHOD OF ANALYSIS

2.1 Analysis
Consider the typical cable—stayed bridge, as shown in Fig 1, consisting of the decks, two pylons, and
cables, which is subjected to concentrated loads p, and a distributed load g, . For convenience, three

coordinate systems, X -¥, Z -X,, and Z, - X, are used for the deck and two pylons in the analysis.
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Fig. 1. A Cable—Stayed Bridge

The potential energy of the whole bridge considering the beam—column effect of the deck and pylon can
be written as

U=[5 B[ (] - [N () [ (9]
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where E,I, =bending stiffness of the bridge deck in elastic zone; £,/ p(z)= bending stiffness of the
pylon; N,(x)=axial force in the decki N 1 (z)=axial force in the first pylon; N »2 (z)= axial force in the
second pylon; y(x)=vertical deflection of the deck at a point distance x from the left end abutment;
X, (zl) =horizontal deflection of the first pylon at a point distance z, from the fixed end of the pylon;
X, (22)=horizontal deflection of the second pylon at a point distance z, from the fixed end of the pylon;
6, =slope of cable i to horizontal; m, =total number of cables of the first pylon; m, =total number of
cables of the second pylon; y; =deck deflection at a point where cable i; y, =deck deflection at a point
where the concentrated load; F, =concentrated load; g, =distributed load; num =number of concentrated
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loads; [ =deck span between two end abutments; and % =height of the first pylon and the second pylon;
m, = cable number of the first pylon; m, = cable number of the second pylon. The plus sign of the seventh

term and the eighth term in (1) is used when the pylon moves horizontally away from cable i, while the
minus sign is used when the pylon moves toward cable i (Xi and Kuang, 1999).

For considering the geometric nonlinearity of the cable sag, the equivalent modulus of elasticity of the
cable suggested by Ernst(1965) is used

E 2
+ E72(1ci cos ei)z
12¢°

o =

1

where E is the modulus of elasticity of the cable, y is the density of the cable, and o is the cable stress.
The deck deflection y at any point distance x from the left end abutment may be expressed by a
trigonometric series

inx
= z  sin == (3)
y a; sin ]

and the deflection of the first pylon and second pylon may be expressed by the rigonometric function

- b1 cos S iz,
X, —;bi(l cos—, J X, -—Zci(l-—cos 2 J @)

i=

where a;,b;, and ¢; are coefficients. Equation (5) is cable force of in the first pylon and cable force of in
the second pylon;

C inx, C inz,

= . sin—LXsin@. + | 1-cos—- :

s Za, sin—--sin 6, —sz(l cos— Jcos@, ®)
i= P
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Equation (6) is axial force of deck in the first pylon and axial force of deck in the second pylon;

k k
N, (x)= Z E;iAC [cfI ]cos 6; N, (x)= Z Eed, [cﬁ ]cos 6, (6)

i=1 ci ; / ci

i=
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Equation (7) is axial force of pylon in the first pylon and axial force of pylon in the second pylon;

k

E A4 L E,
Npl(zl Z ; Cr ]sm 0 N,,(z,)= Z E;’A‘ [cf2 ]sin 8, @

i= ci i=l ci

When the bridge deck is simply supported by the pylon, the following constraint conditions at the deck and
pylon connection should the satisfied.

y/l =% .[)xpl (),')zdx+x|z=’ll =0 W, =% fl (xi)zdzl _y|X=X,,| =0 (83)
v, =% .‘:ﬂ (y')zdx+ x|z=h2 =0 vy, =% fl (x2 )2 dz, - y|x=xp2 =0 (8b)

Substituting Eqs (3) and (4) into Eq. (8), the constraint conditions are not satisfied. Therefore, a solution
may be the obtained by making a new function as follows

V=U-=-4y, -y, - Ly -4y, ©

which is required to be the stationary with respect to the constraints of coefficients of a;,5;, and ¢;, and
Lagrangian multiplies of 4,, 4,, 4;,and 4,.
Equation (9) results in

—

2
y "y 3 » .
v=U -11[% '[o ( > ajicos "ID‘ dx + b 1 cos %)} -4(—2- f[%ib,sin’—%} dz -qum”“Tp'}

n. . 2 ny .
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i=1

The stationary conditions require that

O g 9 _y F_, F_, (j=1234) 8)
Oa ; ob ; oc; 0A;

J 7 J J

Equation (11) represent a set of (nl +n,+n+ 4) equations and can be expressed as matrix form.
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2.2 Material Nonlinearity
Deck and Pylon

The cross section of the bridge deck can be divided into many elements, as shown in Fig. 2. The strain of
and point in the cross section is expressed as

E =& +PY 12)

where ¢;is the strain of any point in the cross section; &, is the axial strain of the deck; ¢ is the curvature
of the cross section. The stress—strain relationships are given by

o,=¢E forle|<e, o,=0, for ,>6, o0,=-0, for ¢ <-¢, 13)

where o, is the yield stress; £, is the yield strain.

-Cy

y

The cross section of the Deck a—¢ relationship distribution of strain ratio

Fig. 2. & —o; Relationship

The stresses and strains on any element 4; are approximated by the stress and strain of the center of the
element. The equilibrium conditions

N=) 04 M=) o4y, (14)
4 A

should be satisfied. The number of elements will affect the precision of calculation results and work load.

When pylons work from the elastic stage to elasto—plastic stage during the procedure of loading, the
problem can be solved by dividing the pylons into a number of elements along the z direction, with similar
treatment for the deck.

Cable
When the first cables work at the elasto—plastic stage, the cable energy caused by the cables will be
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at the elastic stage: =1, =0
at the elasto—plastic stage: =0, =1

where o, is the yield stress of cables; ¢, is the yield strain of cables.

3. A Cable~Stayed Bridge with Two Pylon of Considering Connection

This example haves eight concentrated loads of p=5kN at a distance of 0.8m, 1.2m, 4.8m, 5.2m, 7.2m,

7.6m, 11.2m and 11.6m from the left abutment, respectively, and a uniformly distributed load of
q=3kN /m over the full span are applied to the bridge deck, as shown in Fig. 1. Note X, =3.0m, X,, =

9.4m and the total length is 12.4m. The stiffness of structural components and geometric data of the bridge
are listed in Table 1. In these comparisons, Program considers nonlinearities of beam—column effect and
cable sag, while MIDAS program uses linear analysis method.

Table 1. Material and Sectional Properties of Bridge (2—~Pylon System)

Elastic modulus Area Moment of inertia
E (MPa) A(m") I(m")
cable 1.967 x10° 3.926x10 -
deck 2.074x10° 1.02x10° 1.66x 107
upper p 2.04x10° 2.012x10”
074 S =
pylon lower 2.074x10 3.7x10 7.253x 10

The maximum deflection occurs in the mid—span of the bridge as shown in Fig. 3. However, the bridge
deck deflects upwards in the side parts. This is caused by the effect of cable tension force. Figure 4 shows
the bending moment of bridge deck. Due to the symmetry of the loading, The both side values of bending
moment are almost the same. Figure 5 and 6 show the axial force of bridge deck and tension force of cables.
Areas of pylon have maximum values due to the action of horizontal components of the cable forces. Figure

7 and 8 show the deflection and axial force of pylon. The deflection at the connection between deck and
pylon has values of zero.
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Fig. 3. Deflection of Bridge Deck Fig.

Fig. 4. Distribution of Bending Moment
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Fig. 5. Distribution of Axial Force
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Fig. 6. Tension Force of Cable
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Fig. 7. Deflection of Bridge Pylon Fig. 8. Axial Force of Bridge Pylon

4. Load-Carrying Capacity of a Cable-Stayed Bridge

An example cable—stayed bridge was used to analyze its load—carrying capacity. This is a steel cable—
stayed bridge model. Figure 9 shows the vertical deflection curves of the bridge deck under different load
levels considering geometric and material nonlinearities. The displacement near the load positions has the
same direction as that of the loads. The extreme fibber yields in p=16.45kN . It can be seen that the loads

could not be increased more than p=16.45k4N , but the deflections increase at this load level.

25 Distance along deck (m)

Deflection (mm)

-2.5
-5
-7.5
-10
-12.5
-15
-17.5

4

0.5 kN
3.5kN

6.3 kN
10.65 kN
13.55kN
15kN
16.45 kN-a
16.45 kN-b
16.45 kN-c

Fig. 9. Deck Deflection of Each Load
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5. Conclusion

The proposed energy method may be considered as a simple and efficient, yet accurate, method for the
in—plane nonlinear analysis of cable—stayed bridge. This approach can be employed to calculate effectively
the in—plane load—carrying capacity of steel cable—stayed bridges. In this study, the potential energy of the
whole bridge, including the bridge deck, stayed cables and pylons, and the work done by external loads are
considered in the development of the bridge energy equation. A trigonometric series has been used to
express the deformation of bridge deck. It satisfies all the boundary conditions of the bridge deck. The
trigonometric function has been used to express the deflection of the bridge pylons. It satisfies the boundary
condition of the bridge pylon.

Iteration procedures have been adopted to obtain the coefficients of trial functions for the deflection of the
bridge deck and pylons. This paper describes problem solution for the connection of deck and pylon. Also,
this paper presents method to solve nonlinear simultaneous equations that occur when considering the
connection deck and pylon.

This paper compares results of energy method with common finite element method program. The results
that compare linear analysis and nonlinear analysis considering beam—column effect and cable sag are
evaluated. Analysis results of considering connection deck and pylon are presented. The method that
analyze ultimate strength considering geometric and material nonlinearies is presented.
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