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Abstract

This paper deals with the problems and their possible solutions in the development of finite element for
analysis of shell. Based on these solution schemes, a series of flat shell elements are established which
show no signs of membrane locking and other defects even though the coarse meshes are used. In the
element formulation, non-conforming displacement modes are extensively used for improvement of
element behaviors. A number of numerical tests are performed to prove the validity of the solutions to the
problems involved in establishing a series of high performance flat shell elements. The test results reveal
among others that the high accuracy and fast convergence characteristics of the elements are obtainable by
the use of various non-conforming modes and that the ‘Direct Modification Method’ is a very useful tool
for non-conforming elements to pass the patch tests. Furthermore, hierarchical and higher order non-
conforming modes are proved to be very efficient not only to make an element insensitive to the mesh
distortion but also to remove the membrane locking. Some numerical examples are solved to demonstrate
the validity and applicability of the presented elements to practical engineering shell problems.

Introduction

Shells are regarded as one type of the most complicated structures to analyze in general.
Each of a number of shell theories, i.e. the deep, shallow or flat shell theories, is
associated with particular assumptions. Theoretical solutions obtained with these different
shell theories may not coincide and the assumptions introduced in shell theories may
cause significant errors in occasional cases. The finite element methods have been
successfully used and become indispensable tool in the analysis of shell structures. The
accuracy of finite element analysis much depends on the shell elements used and
modeling schemes.

Due to the simplicity in formulation, the effectiveness of computation, and the flexibility
in applications to both shells and folded plate structures, flat shell elements are used
extensively in many engineering practices. The flat shell elements can be effective and
accurate only when both the membrane and plate bending components of the shell are
equally accurate and robust.



A number of researchers worked on the development of the perfect shell element in the
past. Providas and Kattis (2000) examined two types of flat triangular shell elements
which have six-degrees-of-freedom per node. The study of Batoz et al. (2000) was
restricted to thin plate/shell and did not include the warped geometry, which can be
effectively taken into account by ‘rigid link correction’ (Taylor 1987). Groenwold and
Stander (1995) developed the 4-node flat shell element which has 6 DOF per node and
uses 5-point quadrature scheme to reduce the membrane locking phenomenon. Choi ef al.
(1999) also presented an efficient 4-node flat shell element (NMS-4F), in which the
Allman-type shape function is used to approximate the membrane behavior. Their
elements do not show any spurious zero energy mode, show a good convergence, pass the
patch test, and do not show shear locking phenomenon. A minor shortcoming of
aforementioned flat shell elements (Groenwold and Stander 1995; Choi et al. 1999)
appears to have a tendency toward the membrane locking especially when coarse meshes
are used. Recently, Choi and Lee (2003) presented a scheme to remove the membrane
locking completely using hierarchical and higher order non-conforming(NC) modes
which is highly efficient even though coarse meshes are used.

In this paper, problems in developing the high-performance quadrilateral flat shell
elements are reviewed and their possible solutions are discussed. Two new solution
schemes were specifically introduced in addition to the existing schemes; (1) introduction
of hierarchical and higher order non-conforming displacement modes in addition to the
basic NC modes, and (2) application of Direct Modification Method [9] to the flat shell
formulation. The appropriate remedial schemes, among the existing and/or newly
introduced schemes, are selectively merged into the formulation of a new series of defect-
free flat shell elements in a complementary manner. The hierarchical NC modes used in
this study for the membrane component of flat shell element which replaces the Allman-
type formulation, improve the membrane behavior significantly and thus eliminate the
membrane locking.

A number of practical shell/folded plate problems, i.e. a roof shell, a box with holes, and
in-ground LNG storage tank, were analyzed to show the validity of the presented high
performance flat shell elements.

Problems and solutions in development of defect-free flat shell

A large number of researchers attempted to develop a defect-free flat shell element in the
past (Taylor 1987; Cook 1994; Groenwold and Stander 1995; Choi et al. 1999; Providas
and Kattis 2000). From these works it appears that the perfect flat shell element should
satisfy the following requirements: 1) To be easy to formulate and implement, 2) To be
highly accurate and converge fast to the exact solutions, 3) To be insensitive to element
distortions, 4) To be free from patch test failure, 5) To show no shear locking, 6) To show
no membrane locking, 7) To possess six degrees of freedom per node, 8) To contain no
spurious zero-energy modes, and 9) To be able to handle the warped geometry.

At this time, the perfect shell element that satisfies all the above requirements is yet to be
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developed. Even the successful element may show one or more defects in the
aforementioned requirements. Each of the above requirements is discussed briefly in the
following sub-sections.

Easy formulation —Linear combination of membrane and plate element

The major advantage of flat shell is simplicity in its formulation and computer
implementation. In a flat shell approach, the element formulation can be separated into
two independent formulations, i.e. the plate bending element formulation and the
membrane element formulation, and then the two elements are combined together to form
a flat shell element.

One of the effective ways to achieve an improvement of the isoparametric based element
is the addition of various NC modes to the basic isoparametric displacement mode of
both the plate bending and the membrane elements. The displacement field in an element
can be expressed by

u=YNu+¥ N, (1)

where N, are the shape functions, # are the conforming displacements, N, are the
additional NC modes, and u, are the additional unknowns corresponding to the
additional displacement modes.

Those NC modes considered are as shown in Eq.(2).

N o=1-£%, N, =1-n%, N, =(1-&1-17%) (2a)
N,=(1=¢&m, Ny =(1-n*)¢ (2b)
Ny=(1-&%n, N, =(-n")én (2c)

Modes in Eq.(2a) are defined as ‘basic NC modes’ and are used in the formulation to
achieve the basic improvement of various NC elements. They are particularly effective in
improving the behavior of regular mesh. Eq.(2b) and Eq.(2c) are respectively designated
as ‘hierarchical NC modes’ and ‘higher order NC modes’ (Choi and Lee 2002b).
Combined with the modes in Eq.(2a), the hierarchical NC modes (Eq.(2b)) improves the
element behavior further to the extent of improvement achieved by the Allman-type
formulation (Allman 1988).

As there are no loads corresponding to the internal degrees of freedom &, the load—
deflection equations may be partitioned as (Choi and Schnobrich 1975)

K. K,][u]_[f
pa 2

The enlarged element stiffness matrix in Eq.(3) can be condensed back to the same size as
the stiffness matrix of original element before the addition of NC modes by static
condensation.
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A series of plate-bending elements (Choi and Lee 2000a) can be established according to
the integration schemes used and the NC modes added in the formulation of submatrices
in Eq.(4). The higher order NC modes ¥, and N, in the elements NPB4-II (4-node
Non-conforming Plate-Bending element) and NPB4-III are first introduced by Choi and
Lee (2002a). The element NPB4-I is formulated by the same integration scheme for both
the bending and shear parts, whereas NPB4-11 and NPB4-I1I which have the higher order
NC modes (N, and N,) are formulated by selective integration schemes for K, and
K, . The ‘4-node Conforming Plate-Bending element’ (CPB4), which is identical to
MITC4 element (Bathe and Dvorkin (1985), is also included for comparison.

For the membrane component of the flat shell elements, NMD4-series elements (4-node
Non-conforming Membrane element with Drilling degrees of freedom) are developed by
Choi et al. (2002). The modes N, and N, in the element NMD4-III are also first used
by Choi et al. (2002) and found to be highly effective in the elimination of locking for
distorted elements.

Table 1 shows a series of flat shell elements (NFS4-I~VII) established by the linear
combination of plate bending elements (NPB4-series) and membrane elements (NMD4-
series) where ‘NFS4’ stands for ‘4-node Non-conforming Flat Shell element’. The NPB4-
III element and the NMDA4-1II element show the best performance in plate bending and
in-plane problems, respectively (Choi and Lee 2002b, Choi et al. 2002). Thus, the NFS4-
IV element is judged to be the best flat shell element (Table 1). Hereafter the NFS4-1V
element is designated in a simple manner as NFS4 in this study.

Table 1. Types of presented flat shell elements

Plate Membrane
Elements NC modes NC modes
Elements Elements

0.6, u,v g,
NFS4-1 CPB4 -
NFS4-11 NPB4-1 N, N, _
NFS4-II1 | NPB4-II NN, N,,N, NMDA-IL | N, Mo, N, s )
NFS4-1V | NPB4-III N, ~ N,,N,, N,
NFS4-V NPB4-1 N, N,
NFS4-VI | NPB4-1I N,,N,,N,,N, NMD4-1 N,,N, -
NFS4-VII | NPB4-III N, ~ N,,N,, N,

High accuracy and fast convergence — Use of non-conforming modes

The performance of the conventional lower-order isoparametric elements is not so good
since they are too stiff in bending due to the parasitic shear deformation and therefore the
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slow convergence is resulted. Among the techniques proposed for improvement of the
basic behavior of this type of elements, the use of NC modes may be one of the most
successful approaches that improve the element behavior and thus ensure the fast
convergence of the analysis. The basic concepts and some details of this approach can be
found in the references by Choi and his coworkers (Choi and Schnobrich 1975; Choi and
Lee 2002a).

Insensitivity for mesh distortion — Combined use of hierarchical/higher order and basic
NC modes

The element performance is generally at its best if its shape is compact and regular.
However, it is also desirable to have an element that is insensitive to mesh distortions for
the practical use. Thus the element can produce solutions without significant losses in
accuracy even though the distorted mesh is used.

Choi and Lee (2002b) suggested that a more general configuration of deformation can be
described for NC elements by the addition of hierarchical NC modes (N, and W) to the
basic NC modes ( N, ~ N, ). Choi ef al. (2002) showed that the addition of hierarchical NC
modes are very effective to improve further the behavior of distorted elements of the
membrane and the hexahedral elements, especially when the selective integration
techniques are used simultaneously. The similar combined effects for plate elements, in
which the basic and higher order NC modes are used for rotational fields, can be expected.
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Figure 1. Higher order patch test

To show the behavior of highly distorted membrane elements with drilling DOF, a simple
beam with a length to depth ratio of 10, subjected to a pure bending state, is modeled by
one row of six elements for both the regular and distorted mesh as shown in Figure 1. The
exact solutions are 1.5 and 0.6 for the displacement at center and the tip rotation at both
ends, respectively. The numerical results are tabulated in Table 2, which reveals that the
end rotations are sensitive to element distortion. When the basic NC modes (N, and N,)
are added, the behavior of elements (‘NMD4-I" and ‘NMDA4-III") is significantly
improved. Furthermore, for the case of severe distortion, the NMD4-111 element produces
highly accurate results by virtue of combined effect of basic and hierarchical NC modes
and selective integration scheme.



Table 2. Results of higher order patch test

. Normalized Values
Vertical )
Mesh displacement End rotation Vertical End ti
P displacement nd rotation | Remark
Elements
R D R D R D R D
CMD4 0.547 | 0.222 1 0.210 | 0.095 | 0.365 | 0.148 | 0.350 | 0.158 Chot
NMD4-1" | 1.500 | 1.166 | 0.600 ] 0.469 | 1.000 } 0.777 | 1.000 | 0.782 | (;’gg;)
NMD4-III ™ | 1.500 | 1.382 | 0.600 | 0.590 | 1.000 | 0.921 | 1.000 | 0.983 |
Groenwold and
Stander (1995) 1.500 [ 1.436 [ 0.600 [ 0.565 | 1.000 | 0.957 { 1.000 | 0.942
I“ra(i‘;‘;gﬂ““ 1.500 | 1.091 | 0.600 | 0.498 | 1.000 | 0.727 | 1.000 | 0.830
| Theory 1.5 0.6 1.000 1.000
*  Basic NC modes **  Basic and Hierarchical NC modes

R Regular mesh

D Distorted mesh

Figure 2 shows the typical example for the distorted mesh in which the symmetric
quadrant of a clamped circular plate under uniform loading (4=100) is idealized by
meshes of different number of elements. The radius of the plate is 5 and thickness is 0.1,
and the material properties are £=10.92 and v=0.3. The central displacements obtained
by using various meshes are compared with the exact solution and results by other
authors (Hinton and Huang 1986) in Table 3. The elements ‘NPB4-1I’ and ‘NPB4-1II’,
which have higher order NC modes (N, and »,) in addition to the basic NC modes,
produced better results than those of other elements.

(2) Mesh-1 (NEL=3)

(c) Mesh-III (NEL =48)
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(b) Mesh-IT (NEL =12)

90909990000

(d) Mesh-IV (NEL =192)
Figure 2. Clamped circular plate




Table 3. Results of circular plate

Central deflections Normalized Values
Mesh Remark
Mesh Mesh Mesh Mesh Mesh Mesh Mesh Mesh cma
Elements g -1I -1l -v -1 -1 -1 v
CPB4 9068 9693 9765 9779 109165 0.9797 | 0.9870 | 0.9884
NPB4-1" 9280 | 9742 | 9777 | 9782 | 0.9380 | 0.9847 | 0.9882 | 0.9887 | Choi and

Lee
NPB4-II™ | 9316 | 9752 | 9780 | 9783 |0.9416 | 0.9857 | 0.9885 | 0.9888 (2002a)

NPB4-1II ™ 9316 | 9752 | 9780 | 9783 | 0.9416 | 0.9857 | 0.9885 | 0.9888

Hinton and
4 | 9581 9738 N/A ] 0.8990 | 0.9684 | 0.9843 | N/A
Huang (1986) 889
Theory 9893.75 1.000
*  Basic NC modes **  Basic and Higher order NC modes

When the shape of element is distorted, it is shown from the numerical tests (Table 2,
Table 3) that the addition of hierarchical and higher order NC modes in addition to basic
NC modes is highly effective to improve the behaviors of elements.

Free from patch test failure — Direct Modification Method

As seen in the previous two sections, the use of NC modes improves the element
behavior significantly. However, at the same time it may create another problem that the
resulting elements do not always pass the patch test (Choi ef al. 2001). Therefore, it is
necessary to use some modification schemes for NC modes in order to obtain the
elements that always pass the patch tests. The recent approach, ‘Direct Modification
Method (DMM)’ set the NC modes entirely free from patch test failure with less
computing time than ‘B-bar method’. The fundamental concept of this method and the
applications to 4-node membrane elements and 8-node hexahedral elements with drilling
degrees of freedom can be found in the published literatures (Choi ef al. 2001; Choi et al.
2002). This method is also adopted in this paper.

No shear locking —Substitute shear strain field

Most Reissner-Mindlin type elements become very stiff when used to model thin
structures. A lot of effort has been devoted to identify and eliminate the source of this
‘shear locking’ problem. One of the successful techniques for solving the problems of
shear locking is to use of the constrained substitute shear strain fields (Bathe and Dvorkin
1985; Hinton and Huang 1986; Ofiate et al. 1992). In this method, the standard Mindlin
plate theory is used to calculate the bending stiffness matrix except the way transverse
shear strains are obtained. The plate-bending elements developed by Choi and Lee
(2002a) are used as a plate bending component of flat shell element in this study. The
shear strain matrix of these elements are substituted by the assumed shear strain matrix
by mixed formulation (Ofiate et al. 1992). Details can be found in the reference (Choi and
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Lee 2002a).
No Membrane locking —Hierarchical NC modes

Problems related to membrane locking of flat shell elements were discussed by Taylor
(1987), Cook (1994), Groenwold and Stander (1995), Sydenstricker and Landau (2000),
and Providas and Kattis (2000). Recently, Choi and Lee (2003) suggested an efficient
way to remove membrane locking using hierarchical and higher order NC modes. The
latest study for removal of membrane locking is adopted in this paper. Detailed
discussions and numerical validations can be found in the reference (Choi and Lee 2003).

Six DOF per node —Drilling degrees of freedom

A flat shell element is obtained with a relative ease by combining a membrane element
for plane elasticity and a bending element for flat plates. Therefore, for a 6 DOF per node
finite element formulation, it is required for membrane element to have drilling degrees
of freedom. The presence of the sixth degree of freedom (or drilling degree of freedom)
in shell analysis completes the shell theory and gives significant advantages such as an
easy construction of structural models for the ridge-like connections of folded plates and
beam-membrane connections.

Numerous efforts have been made to develop such membrane elements with drilling
degrees of freedom. Allman (1988) derived a displacement function with a comer rotation
taken as an independent degree of freedom. In this case the rotational degrees of freedom
actually induce in-plane deformation. An approach to derive a functional in which the
drilling rotations are introduced as variables independent of the in-plane deformation
were used by Reissner (1965), Iura and Atluri (1992), and Choi et al. (2002). The
membrane elements with drilling degrees of freedom developed by Choi et al. (2002)
based on the aforementioned approach were used for the membrane part of quadrilateral
flat shell elements in this study.
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Figure 3. Faceted capital Figure 4. Results of faceted capital
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The column capital shaped structure constructed with four panels as depicted in Figure 3
was analyzed by Liu et al. (2000). In consideration of symmetry of the structure, only a
quarter of the structure is actually analyzed. The 24x24 square column (Figure 3)
connected to the capital is replaced by zero-displacement boundary conditions and the
rotation of panel edges parallel to the column edges is free. The top of the capital is free
and concentrated loads with a magnitude of 100 are applied at the four top corners. A
panel is meshed by N x N elements where N varies from 4 to 16. Figure 4 shows the
normalized displacements in direction of the load and a reference value is taken as 1.2375
obtained by Liu et al. (2000) from 64x64 mesh. The results from commercial software
SAP2000 are also listed for comparison. The necessity of drilling degrees of freedom is
well demonstrated from this problem.

No mechanisms —Modified Reduced Integration

The modified reduced integration scheme is adopted for the membrane element for
removing spurious zero energy mode. Since the hierarchical NC modes have higher order
terms, the element NMD4-1I formed by reduced integration is rank deficient and shows
the spurious zero energy mode. A simple modification of integration scheme in forming
NMD4-1I11, 1.e., the use of 5-point integration scheme (Dovey 1974) for the integration of
submatrix B”DB" (Choi et al. 2002), removes the spurious zero energy mode.

The main advantage of the plate-bending elements based on the assumed strain fields is
that these elements have proper rank and therefore, no spurious zero energy modes are
resulted as in the series of NPB4 elements in this study.

In order to check the presence of spurious zero energy modes, the eigenvalue analyses of
a single unconstrained stiffness matrix of the current plate and flat shell element have
been also performed. All the presented plate-bending elements and flat shell elements
have exactly three and six zero eigenvalues associated with the rigid-body modes,
respectively. Thus, all the flat shell elements presented in this study have been proved not
to exhibit any spurious mechanism.

Warped Geometry —Rigid link correction

One last problem in a series in this paper is the problem of the inclusion of the warped
geometry effects due to the fact that nodes of a 4-node flat shell element in a warped
mesh are not coplanar in general. To solve this problem a flat shell element needs to be
modified as its formulation is based on the flat geometry and the membrane and plate
bending characteristics of the element are uncoupled. In order to take into account the
warped geometry, the rigid link correction is simple and easy to use (Taylor 1987). To
evaluate the performance and applicability of the presented elements (Table 1) in warped
mesh, a twisted cantilever beam of rectangular cross section is tested. This cantilever
beam is twisted 90° over its length, and subjected to a concentrated unit load at its free
end. The geometry and loading conditions of this example are depicted in Figure 5. The
element without using any correction scheme for warped geometry cannot solve this
example correctly. The reference solutions in the case of in-plane load and of out-of-plane
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load are 1.3857 and 0.3427, respectively (Jetteur 1986). The properties and dimensions
used are given as Young’s modulus E=29.0x10°, Poisson's ratio v=022, thickness
t=0.05, side length L =12, and concentrated load F=1.0. All the elements presented in
this study show good performance. From these results, the effectiveness of the ‘rigid link
correction’ for the elements in warped geometry is well demonstrated.

E=29x10°
y v=0.22
Length =12
Width =1.1
Thickness=0.05

1.02
§ 1.00 4
3
]
-% NFS.
8 —— 4
g 0984 o e [o Yo Simo (1989)
] —~-y-——~ Taylor (1987}
T e Choai et al. (1999)
E -— - —  Groenwold and Stander (1995)
2 o096
0.94 T T T
1x6 2x12 4x24

Mesh

Figure 6. Results of twisted cantilever beam (in-plane)

Practical problems
Scodelis-Lo roof shell

The Scodelis-Lo cylindrical roof subjected to self-weight load is depicted in Figure 7.
Membrane contribution to deformation is significant in this problem. An analytic solution
for the transverse displacement at the center of the edge (A), as reported by MacNeal and
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Harder (1985) is 0.3024. In consideration of symmetry of the structure, only a quarter of
the roof is analyzed. Normalized values for the transverse displacement at A are listed in
Table 4. The results from other researcher’s are also listed for comparison.

Thickness = 3 in.

Young's Modulus = 4.32 x 10* psi
Poisson’s ratio = 0.0

Gravity load = 90 psi

(Uniform on surface area)

Boundary condition : simply supported
on curved edges

Figure 7. Scodelis-Lo roof shell

Table 4. Results of Scodelis-Lo roof shell

Displacements at A Normalized Values
Elements
4x4 8x8 16x16 | 4x4 8x8 16x16
NFS4 0.31674 | 0.30397 | 0.30159 | 1.0474 | 1.0052 | 0.9973
Belyggl;‘;)e’ al | 029151 | 029151 | 030210 | 0.9640 | 0.9640 | 0.9990
Bathe and
Dvorkin (1085) | 028547 | 029424 | 029907 | 09440 | 0.9730 | 0.9890
Ch"(‘laggi)f’ aik 1 631571 | 030300 | 030089 | 1.0440 | 1.0020 | 0.9950
Reference 0.3024 1.000

Box with holes

A box with holes under two opposite concentrated loads at the centers is analyzed (Figure
8). Using the symmetry, a one-eighth segment is actually analyzed. The properties used
are as follow: £ = 2,100,000, Poisson's ratio v=0.18, and concentrated load intensity P =
2,000. Figure 9 shows the gradually refined meshes obtained under the adaptive process
with a prescribed permissible relative error of 7%.
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Figure 8 . Configuration of box with holes Figure 9. Sequence of refinements

In-ground LNG storage tank

Figure 10 shows the analysis model for LNG storage tank made of various types of
elements, i.e. 3D shell elements and 3D solid elements. In the 3D shell model for tank
structures, roof shell and side wall are modeled with shell elements while the bottom slab
is modeled with 3D solids because of the large thickness of bottom slab. Variable-node
shell elements are effectively used in parts A, B and C. The connections of shell
structures (parts A and C) can be modeled without any other additional treatment such as
the use of rigid area providing refined mesh in the connection area at the same time. Part
B is the typical example of the effective use of variable-node elements to fix up the well-
known defect of predicted stiffness at the top of roof shell where many elements share the
same node. Figure 11 shows the results of analysis of the storage tank under ground water
pressure when the large water pressure is applied on the surface of the side wall. The
refined mesh using the variable-node elements in corbel pick up the abrupt change of
moment distribution effectively.
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Figure 11. Deformation (scale = 1000) and member forces

Conclusions

In this study, the problems involved in development of the quadrilateral flat shell
elements and their possible solutions are discussed. All the existing schemes and a few
newly introduced schemes to solve the problems are utilized in an integrated form in the
development of a series of high performance flat shell elements. The new schemes
introduced in this paper are: (1) the addition of the hierarchical and/or higher order NC
modes to the basic NC modes to form the element shape functions and (2) the application
of Direct Modification Method (DMM) to the flat shell formulation for the purpose of
guaranteeing the element to pass patch tests. These two schemes are successfully
incorporated into the existing schemes.

The NC modes are used as a key scheme to achieve the high accuracy and fast
convergence of the flat shell element. When the basic NC modes are combined with
hierarchical and/or higher order NC modes, the elements become insensitive to mesh
distortions and in addition produce the high accuracy and fast convergence of solution.
One of the major problems of the NC elements, i.e. the failure of patch test due to the
energy variation caused by addition of NC displacement modes, can be effectively solved
by using DMM.

The use of Reissner-Mindlin thick plate theory combined with the use of NC modes
makes the element more versatile in application to both thin and thick plate/shell
problems. When the substitute shear strain fields are used, the shear locking phenomenon
disappears. When the membrane component of a flat shell has the hierarchical NC modes
in addition to the basic NC modes, the membrane locking can be suppressed. The six
degree-of-freedom elements are easily established from membrane element with drilling
degrees of freedom based on the functional in which the drilling rotations are introduced
as independent variables. The modified integration schemes can be effectively used to
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remove the spurious zero energy modes of membrane elements discussed herewith. A flat
shell element can be used for warped geometry by the use of rigid link correction. The
validity of statements in this conclusion is verified by numerical validation. In addition,
numerical examples show that a wide range of the folded plate and curved shell problems
can be effectively solved by the presented flat shell elements.
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