현수교케이블의 응력부식에 관한 신뢰성해석

Reliability Analysis for Stress Corrosion Cracking of Suspension Bridge Wires

  • Taejun (Taejun Cho) ;
  • Andrzej S. Nowak (University of Michigan)
  • 발행 : 2003.04.01

초록

This paper deals with stress corrosion cracking behavior of high strength steel exposed to marine environments. The objective is to determine the time to failure as a function of hydrogen concentration and tensile stress in the wires. A crack growth curve is modeled using finite element method (FEM) program. The coupled hydrogen diffusion-stress analyses of SCC were programmed separately. The first part is calculating stress and stress intensity /sup 1)/factor of a cylindrical shell, prestressing tendon or suspension bridge wires, from the initiation of cracks to rupture. Virtual crack extension method, contour integral method, and crack tip elements are used for the calculation of stresses in front of the crack tip. Comparisons of the result show a good agreement with the analytical equations and wire tests. The second part of the study deals with the programming of hydrogen diffusion, affected by hydrostatic stress, calculated at the location of boundary of plastic area around the crack tip. The results of paper can be used in the design and management of prestressed structures, cable stayed and suspension bridges. Time dependent correlated parallel reliabilities of a cable, composed of 36 wires, were evaluated by the consideration of the deterioration of stress corrosion cracking.

키워드