Determination of optical constants of selenide glasses of Ge-Sb-Ga-Se system using spectroscopic ellipsometry

†신상근, 김상준, 김상열, *최용규, *박봉재, *서홍석
†아주대학교 분자과학기술과, *한국전자통신연구원 광통신소자연구부
†bynuncle@ajou.ac.kr

광통신 분야에서 광신호의 장거리 전송에 따른 세기 감소를 보강하기 위해 쓰이는 광섬유 증폭기는 현재 1.3 μm 대역, 1.45 μm 대역 및 1.5 μm 대역에서 작동하는 회로형 이온 주파영광방이 증폭기 소형 및 저전력화의 요구에 따라 더욱 넓은 파장대역에 실용화될 수 있도록 하는 새로운 광재료의 광 증폭기 구현을 가능케하고 나아가 광통신용융을 기존보다 훨씬 더 큰 10 Tbps급 이상으로 늘이기 위해 1.6 μm 파장대에 U 밴드에 광섬유기 광섬유인 Pr 첨가 셀레나이드 유리 조성의 신 소재를 개발하였는데, 본 연구에서는 Ge-Sb-Ga-Se 계열의 Pr 첨가 셀레나이드 유리의 광 손실률을 분광타원법(spectroscopic ellipsometry)을 사용하여 결정하였다.1, 2

본 연구를 위해 사용된 측정기는 위상변조형 분광타원계(Spectroscopic Phase Modulated Ellipsometer, Jobin-Yvon, UVISEL)와 분광광도계(Spectrometer, Sinco UV S-2100)이다. SE 측정은 임사각을 70°로 하여 0.74 ~ 4.5 eV의 대역에서 수행하였다. 굴절률 분석을 위한 시료는 Ge90Sb10Se60Pr80의 기본조성에서 Ge 함량과 Sb 함량을 조절하여 변환시킨 명어리 유리 시료이다.

시료의 광물성은 앞서에 기술한 spectrocometer로부터 측정한 투과도를 이용한 뒤, SE를 사용하여 타원상수 괄호의 구형 양상을 구하였다. 타원상수는 각 시료의 전, 후면으로 각면의 위치에 대해 여러번 측정하여 전, 후면의 차이 그리고 위치에 따른 차이에 의한 효과를 조사하였다. 광투과 영역을 결정하고, 두 번째로 SE를 사용하여 시료마다 각각의 면에 대해 두 번씩 측정하여 타원상수를 구하였다. 투과율에서의 SE 데이터 분석에는 Sellmeier 분산관계식을 사용하여 굴절률을 나타내고 공기/박막/기층의 3상계의 모델을 적용한 뒤, 분산계수와 박막 구조상수를 동시에 결정하는 모델링 방법을 적용하였다.
그림 1. Ge-Sb-Ga-Se 계열의 셀레나이드 유리의 분광타원 스펙트럼.

그림 2. 각 Glass 샘플의 위치에 따른 공정률을 평균을 하여 나타낸 그래프

참고문헌