광자결정: 이론과 응용
Photonic Crystals: Theory and Applications

기철식, 임한조
 아주대학교 전자공학과
 email: haniolim@ajou.ac.kr

21세기의 정보화 사회에는 많은 양의 정보를 신속하게 전달하며 처리하는 기술이 요구되게 되었다. 하지만, 20세기의 과학발전을 주도했던 전자소자는 이러한 요구에 부응하기 어렵다는 것이 전문가들의 공통된 견해이며 그 대안은 광을 이용한 광소자에서 찾고 있다. 현재, 기존의 광소자들은 효율과 소자의 크기 면에서 한계를 보이고 있어 그 한계를 극복할 대안이 요구되어 왔다. 전자기술은 20세기말의 대량생산을 통해abcdefghijklmnopqrstuvwxyz이 그 대안이 될 것이라 기대하며 광자결정을 전략적인 차세대 연구과제로 선정하여 나노광소자 (nano-optical devices) 혹은 나노광공학 (nano-photonics)이라는 이름으로 집중투자하고 있다.

광자결정이란 유전상수 혹은 기절률이 주기적으로 변하는 구조로 특정주파수영역의 광을 전파시키지 않고 모두 반사하는 특성을 가진다.(1) 어느 과정이 가진 광이 광자결정을 전파하지 못하고 반사되는 것은 광자결정이 그 광에 대한 전파모드를 가지지 못하기 때문이다. 이런 레이아웃에서 그 특정주파수영역은 주기적인 정밀한 포텐셜내에 있는 전자가 가질 수 없는 에너지 영역인 전자비 간격 (electronic bandgap)과 개념적으로 유사해 그 주파수영역을 광자结完 (photonic bandgap)이라 부른다. 또한 광자결정 내에 국소적인 결합 (defect)을 만들면 그 결합으로 인해 광자 빔 간격 내에 전파가 가능한 모드가 생기며 이를 결합모드 (defect mode)라 부른다.(2) 결합모드의 주파수는 국소적 결합을 적절히 설계하여 광자 빔 간격 내의 모든 주파수에 맞설 수 있는 장점이 있으며 그 공간적인 분포는 국소적 결합에 강하게 구속되어 있어 필터, 공질기, 도파관 등에 응용될 수 있다. 이외에도 광자결정의 광학적 특성들은 주기적인 구조로 기인되는 강한 분산특성 (3)과 주기보다 훨씬 긴 과장에서의 비등성 (birefringence) (4) 등이 있으며 이런 특성을 이용한 소자 개발도 이미 이루어지고 있다.

광자결정소자란 간단히 말해, 광자결정의 광자 빔 간격, 국소적 결합으로 인한 결합모드, 그리고 강한 분산특성을 이용한 광소자로 한다. 광자결정소자의 종류는 크게 광원에 해당하는 레이저 (laser)와 발광장과 같은 동등소자에 응용되는 경우와 발생된 광을 원하는 방향으로 전파시키는 도파관 (waveguide), 원하는 광의 방향을 선택적으로 통과시키는 필터 (filter), 광의 진행방향을 여러 갈래로 분할하는 분할기 (splitter), 그리고 여러 광을 혼합하는 혼합기 (combiner)와 같은 동등소자에 응용되는 경우로 나누어진다. 이러한 광자결정소자들은 그 구조상 유기적인 결합이 용이하고 크기가 매우 작기 때문에 광자결정소자를 이용하면 기존의 평면광장적회로 (planar photonic integrated circuit)보다 성능이 우수하며 크기와 매우 적은 광장적회로를 구현할 수 있을 것이다.
그림 1 광자결정 광학적회로를 구현할 대표적인 광자결정소자들. 가장 위에서 시계방향으로 국소결합을 이용한 나노레이저, 줄결합을 이용한 도파관, 도파판과 궁극기를 이용한 필터, 60° 각이진 도파관을 이용한 분하는기, 90° 각이진 도파관, 결합기.

이러한 기술을 요하는 제작기술 문물이나 중요한 것은 제작에 앞서 원하는 기능을 갖는 광자결정소자 구조를 설계하는 이론적 수치적 방법으로 제작경비와 비용을 줄이는 것뿐 아니라 광자결정소자의 기본적인 특성을 이해하는데 큰 도움이 되므로 세계 여러 연구 그룹에서 개발되고 있다.

본 특장에서는 앞에서 언급한 광자결정의 중요한 특성에 대한 물리와 이를 탐구하는 이론적 방법, 광자결정의 제작방법 그리고 광자결정의 대표적인 용융사례들을 소개한다. 이론적 방법에서는 광자결정 내의 전파모드를 계산하는 평면과 전개(plane wave expansion: PWE)방법과 전파모드에 해당하는 광 자결정 내에 어떻게 전파되어가는지 알아보는 유한차이시각영역 (finite difference time domain: FDTD)방법을 주로 소개한다. 광자결정의 제작방법으로는 e-beam lithography 와 multi laser beam holography를 이용한 방법 등을 소개하고 광자결정의 용융사례에 있어서는 나노 레이저, 광 자결정 도파관과 그것을 이용한 고 기능성 수동소자, 광자결정의 강한 분산특성을 이용한 초프리즘 (super prism)과 금속박막을 이용한 투명거울을 소개한다.

참고문헌