20039 CHEFETEES) SHAZEISIENS =28 M26H AIS

In-Circuit Al2¥ € J A5 4y d¥A &4

oA, 71¢E", AFT

#2RLr)£d A7) ANED A7) L AR B AP
" tholubgl Al2d

In-Circuit System-on-Chip Verification and Debugging Environment

Jae-Gon Lee, Ando Ki" and Chong-Min Kyung

Department of Electrical Engineering and Computer Science, KAIST
* Dynalith Systems Co., Ltd.
E-mail: jglee@vslab.kaist.ac.kr

Abstract

This paper presents in-circuit systemn-on-chip verification and
debugging environment. To maximize the emulation speed, the
software part is compiled natively for the host computer and
the hardware part is mapped into FPGA. The two parts com-
municate with each other in transaction level. The operation of
the hardware part and the software part is recorded independ-
ently during the emulation, and after the emulation is over, they
are merged in a waveform to give user a unified view that cov-
ers both hardware and software.

1. Introduction

Advances in the semiconductor processing technology
have brought more and more transistors into a single de-
vice than ever. Nowadays microprocessors, digital signal
processors, memories and custom logics are integrated in
a single chip to form a system-on-chip.

Verification of such a system-on-chip is quite different
from that of system-on-board. Since the former embraces
the entire blocks and functionality in a single chip, each
functional block cannot be tested before fabrication.
The component designers may have tested their designs
with simulation, but that does not guarantee it will work
as expected in silicon.

This kind of problem is most significant for the inter-
face between the software and hardware. In general, the
software design team and the hardware design team are
separated, so there is a great possibility there to be mis-
understandings between them, which might lead to
re-fabrication [1, 2].

To address this problem, co-design/co-verification
method is used. In one method, entire hardware model
including the processor is described in HDL and simu-
lated with the software model compiled to the target
processor. With this method, the users can verify their
software/hardware designs in a cycle-accurate manner.
But this method wastes lots of simulation time in simu-

lating the core processor, which already have been
proved.

The second method, the software-based
co-verification, removes this redundancy with Instruction
Set Simulator (ISS) and Bus Functional Model (BFM).
ISS models the instruction-accurate behavior of the
processor, and the BFM generates cycle-accurate pin
signals to access hardware models [3,4,5,6,7,8,9,10,11].
Although, this method runs faster than the previous ap-
proach, it still lacks the performance required for
in-circuit verification. As a result, input stimulus needs
to be provided as a test vector to verify design-under-test.
But, in most cases, test vectors cannot cover all the pos-
sible situations. It means the designer tapes out his'her
design with imperfect test environment.

To this problem, this paper shows how to verify sys-
tem-on-chip designs with real target environment and
how to observe their behavior. To gain the maximum
simulation performance and to allow verification in the
early design stage, the software design is compiled
natively for the host computer, and the hardware design
is mapped into FPGAs. We also propose a unified
HW/SW debugging environment for the proposed plat-
form.

Section II explains the verification platform and sec-
tion III deals with the debugging environment for the
given platform. A case study is given in section IV fol-
lowed by conclusion in section V.

II. In-circuit system-on-chip verification

Fig. 1 shows the block diagram of the proposed
in-circuit system-on-chip verification platform. The de-
sign is composed of two parts: software and hardware. In
order to get the maximum simulation speed, software de-
sign is compiled natively for the host processor. The Ap-
plication Program Interface (API) and the transactor
make it possible for the software and hardware to com-
municate with each other. The hardware design (custom
logics with IP) is synthesized and mapped into FPGA to
connect the verification system to the target system.

Fig. 2 shows the proposed system-on-chip design flow.

1007

2003 S CHSIMAIZES| StHSEHEaUs =28 M6A HIS
Host computer FPGA target board PSA block
L Controller |
trans—) i j Mri j
APl [g=tp device sampling rig. trig. trig.
actor - _3 rate position match ¢ condition
- c sampled . .
% signal SRAM Triggering
)) . - S-F’ Sampler { interface condition
Fig. 1. Block diagram of the system-on-chip verification a ,] checker
= sampled sample
platform signal A signal

When the functionality of the software and hardware de-

sign is verified in step 1, the software design is compiled

for the target processor, and the hardware design is fab-
ricated as in step 2 of fig. 2.

1II. Debugging

System-on-chip design is composed of two heteroge-
neous parts, so is the debugging environment. The hard-

ware debugger should be able to observe the cy-
cle-accurate behavior of the design with no overhead,

while the software debugger should be able to record the
value change history of variables in user’s program. The
former is named as Pin Signal Analyzer (PSA) and the

latter is named as Software Variable Analyzer (SVA).

The following subsections we will cover PSA and SVA.

The last subsection deals with the synchronization prob-

lem of the results of the two analyzers to generate unified

debugging information.

A. Pin Signal Analyzer

PSA samples hardware signal values with pre-defined
sampling frequency and stores them in the dedicated ex-
ternal memory. For that purpose, PSA block is added
along with the user’s hardware design when it is synthe-

sized. After the emulation is over, the stored data is

host
processor

transaction
level

natively
compiled

software

(a) Step 1

system—on—chip

cJstom
logic

target processor
software compiled
for the target

processor

(b) Step 2
Fig. 2. Design flow

External acquisition memory (SRAM)

Fig. 3. PSA block diagram

translated to a waveform containing cycle-accurate be-
havior of the design.

The PSA block is composed of the following five
sub-blocks. (fig. 3)

® External acquisition memory stores the sampled
data.

® Controller contains control registers to control the

rest of the PSA sub-blocks.

Sampler samples the pin signals at a given sam-
pling frequency and sends the result to the SRAM
interface sub-block and the triggering condition
checker.

SRAM interface stores and retrieves the sampled
data.

Triggering condition checker checks whether
triggering condition is satisfied.

The external acquisition memory is composed of six
32bit x 256k SRAMs, which can hold 256k samples of
192 signals, 128k samples of 384 signals, or 512k sam-
ples of 96 signals according to the operating modes.

Controller holds variable configurations of PSA. This
allows flexible management of the PSA block. Control
registers include triggering condition, triggering position,
sampling rate, external triggering condition enable, etc.
Recompilation is needed only when the target pin list is
changed.

To overcome the limited size of the acquisition mem-
ory, triggering condition can be set to store signal values
around some moment. There are thirteen kinds of trig-
gering conditions available, analogous to logic analyzers.

The structure of the triggering condition checker is
shown in fig. 4. It is composed of pattern checker blocks,
a timer block, and a sequencer block. Each pattern
checker block compares the input pin signal value with
the pre-defined reference pattern or edge. When the input
signal matches the given pattern/edge, the ‘pattern
match’ signal is activated. (Pattern match 0, 1, 2 in fig. 4)
The timer block has a counter and compares the counter
value with the reference counter value. This counter can
be activated by one of the pattern match signal to calcu-

1008

2003 & CHerMXIS38ts| SHASE

szU3 =28 H26d HNIS

Triggering condition checkef

sampled signal atern match 0
patiein O h I
checker 0 satern "3‘;’
Patiorn | | o match)
attern 1 checker §
patern
match 2

Patten || | o match 2]
attemn.2 checker 2 AND ~
patern |} /00 on/ott/in
Pattern || | match 3|
J;al'.|°'—"3_ checker 3
Pattern
AND /oty

attern 4 checker 4
OR
Pattern
ret. counter
sequencer AND on/off/in;
match OR
ref . sequence

0 AND

attern S checker 5
patern match bus
external

ot

trigg
T

force trigger

Fig. 4. Structure of the triggering condition checker

late the time elapsed after the given pattern/edge occurs.
The sequencer has a state machine that records the se-
quence of the previous patterns/edges. When the se-
quence matches the pre-defined sequence, ‘sequencer
match’ signal is activated. According to the configura-
tion register values, one of the six pattern match signals,
timer match signal, and sequencer match signal, or the
combination of them is selected as a “trigger done” out-
put signal. In addition, external trigger signal and force
trigger signal can also be used to trigger the PSA logic,
which is shown at the bottom of the fig. 4.

When the emulation starts, the sampler begins to store
the pin signal values to the acquisition memory. They are
stored from the address 0 of the acquisition memory, and
the address is increased with every sampled data. When
the address reaches the last address of the memory, it is
reset to O to start writing from the first entry of the mem-
ory. This continues until the triggering condition is met.
When the triggering condition is met, the SRAM inter-
face stops after predefined time according to the trigger-
ing position. For example, when middle triggering posi-
tion is set, SRAM interface stops after writing 128k
sample data This leaves 128k sample data prior to the
triggering point and 128k sample data after that in the

A=10;
ry sva_store(0, 10);
gzj\?;,. B=A+;
C=8+2: sva_store(1,A+);
’ C=B+2;
sva_store(2,8+2);
Fig. 5. Instrumentation code insertion.

Sva_store(ID, new_value) gets the variable ID
and the new value for the variable and stores them
in the dedicated memory area with time stamp.

acquisition memory.

After the emulation is completed, the content of the
acquisition memory with additional header information
is translated to waveform file. The header information
includes the last write address, triggering point, operating
modes, sampling rate, etc. The waveform file is readily
visible with popular waveform viewer such as GNU
gtkwave or Veritools’ Undertow VIII.

B. Software Variable Analyzer

As mentioned before, hardware software
co-verification is one of the most important challenges in
the system-on-chip design. So we need to verify the op-
eration of the software as well as the hardware. SVA is to
observe the software behavior of system-on-chip design.

SVA stores value change history of variables in the
software part of the design. During emulation, the data is
stored in the main memory of the host computer, and af-
ter emulation is completed, it is merged with PSA data to
form a unified waveform. We’ll describe the merging of
the PSA and SVA data in the next subsection.

To record the value change history of variables, in-
strumentation code is inserted before emulation as in Fig.
5. The user’s software model in C is preprocessed and
the instrumentation code is inserted automatically. It is
inserted where the selected variable is assigned to a new
value. The insertion of the instrumentation code may
slow down the simulation speed of the software part of
the design. But, as the communication between the soft-
ware and hardware part is done in transaction-level,
overheads introduced by the instrumentation code do not
matter.

The instrumentation code stores the variable ID, time
stamp and the new value for the variable in the dedicated
area memory in the host computer. As in the PSA, the
instrumentation code continuously overwrites the previ-
ous data until triggering condition is met.

Each variable can have a triggering condition, which
disables the instrumentation code to preserve the value
change history at that moment. Triggering condition is
checked whenever the instrumentation code is called.
There are six kinds of triggering conditions for SVA.

When the triggering condition for SVA is met, SVA
sends command that forces PSA to trigger. On the con-
trary, when PSA meets the triggering condition, PSA in-
terrupts SVA to trigger.

C. Synchronization between PSA and SVA

Since the chip model is realized in part with software
and the others with hardware, we need to observe their
concurrent behavior in a unified time scale. In the previ-
ous two subsections, we discussed how to store the
hardware and the software behavior of the chip model. In
this subsection, we show how to merge the two hetero-
geneous data.

Each of PSA and SVA has a time stamp, i.e., synchro-
nization counter for PSA and CPU timer value for SVA.
To resolve the relation between two time stamps, each

1009

20038 CHEtNMXIESE StHEES s == H26A IS

dump data contains a header with a unit of time. In other
words, the PSA header contains the sampling rate and
the SVA header includes the CPU clock frequency. As
we know the update frequency of each counter, we need
to know the initial value for the two counters. For that
purpose, we read the two counter values at some time to.
Then, the relation between the two counter values can be
correlated as follows;

timerau(t) — timercu(to)
Jreqcr

_ countersu(t) — counteres(to)

- Jfreqes

t: arbitrary time
to: initial time
timercpy(t): CPU timer value at time ¢
timercpy(ty): CPU timer value at time £,
Jregcpy: CPU clock speed in MHz
counterpg,(t): PSA Synchronization counter value at time
t
counterpsy(ty): PSA Synchronization counter value at
time ¢,
Jfreqpss: PSA sampling frequency
We can rearrange the formula for the countercpy(t) as

follows;
freqa

timer e (t) = = x (counter ru(t) — counter Pu(to))
freqm

+ WM wélehn calculate the synchronization counter
value corresponding to a given CPU timer value. Thus,
each time stamp in the SVA data is transformed to a
synchronization counter value, which makes it possible
to generate a unified waveform covering both hardware
and software.

IV. Experimental result

We adapted the system-on-chip verification method-
ology to MPEG-2 decoder example. The chip reads the
mpeg-2 encoded image data and decodes it and generates
CCIR-601 compatible video output signal. The target
board contains flash memory that contains the encoded
data and NTSC encoder, which gets the CCIR-601 video
data from the target chip and transforms it to NTSC
video signal. The hardware part contains interface logic
for flash memory and NTSC encoder and the software
part deals with the mpeg-2 decoding algorithm. Fig. 6
shows the block diagram of the example.

system—on-chip model

host L mpeg-2 decoding algorithm '——P[SVA I

A

frame buffer

NTSC encoder
interface interface PSA I

4

FPGA Eash memory

interface

target
board

Fig. 6. Block diagram of MPEG-2 decoder example

Linux based PC with Intel Pentium-3 processor is
used as a host processor, and XILINX Virtex-E 1600 is
used as a FPGA. With natively compiled code and FPGA
mapped interface logic, the methodology showed 15
frame/sec, which is impossible with previous
co-verification tools or FPGA-based emulators.

For debugging, 111 I/O signals are observed with PSA,
and nine variables are observed with SVA. Fig. 7. shows
the resulting waveform. The upper signals stand for the
I/O signals of the system-on-chip, and the lower signals
stand for the software variables. This waveform shows
when the software finishes decoding the third frame and
starts to read the encoded data from the flash memory.

V. Conclusion

In this paper, in-circuit system-on-chip verification
method and debugging is presented. With natively com-
piled code and FPGA, emulation speed can be acceler-
ated dramatically to allow in-circuit emulation. The pro-
posed debugging environment provides the users with
run-time behavior of their hardware and software designs
with target board, and makes it possible to correlate
events between hardware and software.

This will free the designers from the time-consuming
and error-prone jobs of test bench generation and make it
a lot easier to find bugs between the hardware/software
interfaces.

References

[1] P. Gupta, “Hardware-software codesign”, IEEE Po-
tentials, Vol. 20, Issue 5, pp. 31-32, 2002.

[2] W. Wolf, “Hardware/software co-design™, ASIC/SOC
Conference Proceedings, pp.423 —423, 1999

[3] Serge Leef, “A methodology for virtual hard-
ware/software integration”, unpublished, Mentor Graph-
ics, http://www.mentor.com.

[4] Brian Bailey, Russ Klein, and Serge Leef, “Hard-
ware/software co-simulation strategies for the future”,
unpublished, Mentor Graphics, http://www.mentor.com.
[5] Russ Klein, “Hardware/software co-simulation”, un-
published, Mentor Graphics, http://www.mentor.com.

[6] T. W. Albrecht, J. Notbauer, S. Rohringer, “HW/SW
coverification performance estimation & benchmark for
a 24 embedded RISC core design”, Design Automation
Conference Proceedings, 1998.

[7] F. Petrot, D. Hommais, A. Greiner, “A simulation en-
vironment for core based embedded systems”, Simula-
tion Symposium Proceedings, pp. 86-91, 1999

[8] M. Manolescu, 1. Furlan, “Software/hardware co-
simulation methodology”, CAS '99 Proceedings. pp.
89-92, 1999

[91 A. Hoffmann, T. Kogel, H. Meyr, “A framework for
fast hardware-software co-simulation”, Design Automa-
tion and Test in Europe Proceedings, pp. 760-764, 2001
[10] L. Guerra, J. Fitzner, D. Talukdar, C. Schlager, B.
Tabbara, V. Zivojnovic, “Cycle and phase accurate DSP
modeling and integration for HW/SW co-verification”,
Design Automation Conference Proceedings, pp.
964-969, 1999{11] C. Liem, F. Nacabal, C. Valderrama, P.
Paulin, A. Jerraya, “System-on-a-chip cosimulation and
compilation”, [EEE Design & Test of Computers, Vol. 14
Issue 2, pp. 16 -25, 1997

1010

