2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju, Korea

A New Method for Efficient in-Place Merging

Pok-Son Kim, Arne Kutzner
Kookmin University, Department of Mathematics, Seoul 136-702, Korea
pskim@kookmin.ac.kr
Seokyeong University, Department of E-Business, Seoul 136-704, Korea
kutzner@skuniv.ac.kr

Abstract

There is a well-known simple, stable standard merge al-
gorithm, which uses only linear time but for the price
of double space. This extra space consumption has been
often remarked as lack of the standard merge sort algo-
rithm that covers a merge process as central operation.
In-place merging is a way to overcome this lack and so is
a topic with a long tradition of inspection in the area of
theoretical computer science.

We present an in-place merging algorithm that rear-
ranges the elements to be merged by rotation, a special
form of block interchanging. Our algorithm is novel, due
to its technique of determination of the rotation-areas.
Further it has a short and transparent definition.

We will give a presentation of our algorithm and prove
that it needs in the worst case not more than twice as
much comparisons as the standard merge algorithm. Ex-
perimental work has shown that our algorithm is efficient
and so might be of high practical interest.

Introduction

The well-known standard merge algorithm is of linear
time but needs linear extra space. This need of extra
space is often remarked as significant lack of the standard
algorithm and motivated the search for efficient in-place
merging algorithms. A brief overview of the historical
developments in the search for such algorithms gives the
introduction of [3]. Roughly spoken an algorithm merges
in-place if it needs only a constant amount of extra data-
space. Additionally the stack is restricted to logarithmic
depth.

Most, but not all (e.g. [5]), in-place merging algorithms
proposed so far are block-interchange based. Basic idea
of all these algorithms is to realize the merge process as a
sequence of successive different block interchanges. Spe-
cial forms of block interchanges are rotations. A rotation
ensures that the ordering of the elements doesn’t change
during block interchange. A description of several rota-
tion algorithms is contained in [2].

We will introduce a rotation-based in-place merge algo-
rithm. The algorithm uses a novel technique for the de-
termination of the areas to be rotated. The novel tech-
nique bases on a strategy of svmmetrical comparisons.

Our algorithm has a short and transparent specification
in contrast to the algorithms presented in [3], [6] and [7].
Experimental work has shown that it is efficient and fast.
A merging algorithm is regarded as stable, if it preserves
the initial ordering of elements with equal keys. We as-
sume that our algorithm is stable, but won’t give any
proof for this assumption here.

First we will describe our algorithm and the basic prin-
ciple of its block determination. Then, giving a sketchy
proof, we will show that our algorithm is of linear time
in the worst case. Finally we will report about some
experimental work.

Algorithm

The presented algorithm will be called Powermerge, due
to its efficiency compared to most other merge algorithms
proposed in the literature so far. Powermerge uses a clas-
sical divide-and-conquer strategy [4] for merging and acts
according to the following principle:

In a first step special bounds inside either sequence to
be merged are calculated. The second step is a inter-
change of elements between either sequence, realized by
a rotation. The area to be rotated is determined by the
bounds calculated in the first step. After the rotation the
algorithm is applied recursive to smaller subsequences.

We now describe the method more in detail by using a
accompanying example:

We assume that we have to merge two sequences U =
(0,2,5,9) and V = (1,4,7,8). Figure 1 a) shows the
picture at the beginning of the merge. When we com-
pare the input with the sorted result, we can see that
in the output the last two elements of U (the elements
5 and 9) occur on positions that belong to V, while the
first two elements of V appear on positions in U. So 2
elements were moved from U to V and conversely. Fig-
ure 1 a) shows this fact graphically. The kernel idea
of Powermerge is to compute the number of moving el-
ements efficiently and to apply a rotation that exactly
interchanges the corresponding elements. After the ro-
tation the arising subsequences are merged by recursive
applications of Powermerge. The rotation process as well
as the recursive applications is shown by figure 1 ¢).

It is an important observation that we can exactly specify

392

Algorithm 1 POWERMERGE algorithm
POWERMERGE (4, from, pivot, to)
middle «— (from + to)/2; mp « middle + pivot
if pivot > middle then
Istart — mp - to; lend «— middle
rstart «— pivot; rend « to
rfrom «— BOUND (4, Istart, lend, mp - 1)
rto < mp - rfrom
if rstart < rto then
ROTATE (A4, rfrom, rstart, rto)
if rfrom > from then
POWERMERGE (A, from, rfrom, lend)
if rto < rend then
POWERMERGE (4, lend, rto, rend)
else if lend < rstart then
POWERMERGE (4, lend, rstart, rend)

else
Istart «— from; lend «— pivot
rstart — middle; rend — mp - from
rfrom «— BOUND (A, Istart, lend, mp - 1)
rto «— mp - rfrom
if rfrom < lend then
ROTATE (A, rfrom, lend, rto)
if rto < to then
POWERMERGE (A, rstart, rto, to)
if rfrom > Istart then
POWERMERGE (4, Istart, rfrom, rstart)
else if lend < rstart then
POWERMERGE (A4, Istart, lend, rstart)

BOUND (4, I, r, p)
while [< r
—{U+r)/2
if Alm] <Alp - m]
then | — m + I;
else r — m;

return [
U 1%
Lolz 5‘9 1[4 ﬂﬂ ’0,2 ﬂg 1\4 7[84!
@Rotation
a) 4 c)
[0[1|2‘4 5}7!8]9| 0|2 ﬂ4 5|9 7[8|
ion 1 Recursion 2 l
——
b) [o]2]5]0 1|41@

il

Figure 1: Powermerge example

393

v ! 174

a) right side longer
| U o v
U o | Iv T

b) equal size

|
i
Figure 2: Cutting rules

which elements must exchanged in order to get a sorted
result. If we merge two ascending sorted sequences U, V,
the n greatest elements of U always move to V and the n
smallest elements of V move to U, for some n > 0. This
mechanism of mutual exchange is central in the context
of the correctness of Powermerge.

We will now focus on the process of determining the num-
ber of elements to be exchanged. This number may be
determined by a process of symmetrical comparison of el-
ements of both sequences and happens according to the
following principle:

We start at the leftmost element in U and at the right-
most element in V and compare the elements at both
positions. We continue doing so by symmetrically com-
paring element-pair by element-pair from the outsides to
the middle. Figure 1 b) shows the resulting pattern of
mutual comparisons of elements in U and V. There can
occur at most one position, where the relation between
the compared elements alters from ’less than’ to ’greater’.
In our example two thick lines mark this position. This
thick lines mark the bounds for the rotation. The ele-
ments between the two bounds must be interchanged to
get a sorted result.

If the bounds are on the outermost left and right position,
this means all elements of U are greater than all elements
of V', both blocks must be exchanged and we have imme-
diately a sorted result. Conversely, if both bounds meet
in the middle we have to do nothing, because UV is then
already sorted.

The idea presented so far used a sequential strategy for
computing the rotation-bounds. Alternatively this can
be performed more efficiently by a strategy similar to
a binary search. Such a strategy is used by the func-
tion BoOUND whose definition is given as part of the
Powermerge-definition (see Algorithm 1). The function
BOUND computes the requested bounds efficiently using
{Hog, (min(jU},1V|))] + 1 comparisons.

If the sequences to be merged are of different size, we
use mechanism of cutting out a subsection of the longer
input sequence. Figure2 explains this mechanism graph-

ically. This means, we handle asymmetry by operating
only on a subsection of the longer sequence. In the case
of a rotation, the rotation is extended to the elements
between the marked areas of figure 2 .

Algorithm 1 gives a specification of the Powermerge-
algorithm in pseudo code.

The Powermerge algorithm is rotation based. The rota-
tion corresponds to a block interchange but both notions
are not identical because rotation implies that the order-
ing of the elements is preserved. Several efficient rotation
algorithms are presented in [2].

Worst Case Complexity

There have been proposed in-place merging algorithms
that are not of linear time in the worst case, for example
the shuffle based algorithm proposed by Ellis and Markov
in [5]. We will now give a sketchy proof that Powermerge
is a linear time algorithm with respect to the number of
comparisons.

Theorem 1: Let n = 2m,m = 2* . If two sequences of
size m are merged, the number of comparisons needed in
the worst case ts 2n — k — 3 = O(n).

Proof: The number of comparisons needed in the worst
case is: (logm+1)+2((log(m/2))+1)+2%((log(m/2%))+
1) +--- + 2%((log(m/2%)) + 1) where m = 2*

The above expression is resolved as follows:

(logm + 1) + 2((log(m/2)) + 1) + 22((log(m/22)) + 1) +
-+ + 2F((log(m/2%)) + 1)
=3k (2 (log2k— 4 1))

= > "F o 2'(log2*~) + TF 2
=Y o2 (k—i) + T2
—k*E 02 —Z:';oi*?i‘*‘z:f:oQi

= (k+ 1)(5E2) — (k- 1)2641 4 2)
=(k4+1)2¥1 —(k+1) — (k—1)2k+1 -2
=2x21 Kk _3=2n—k-3=0(n)

qed.

Experimental results

First experimental work with the Powermerge algorithm
has shown, that this algorithm might be of high prac-
tical interest. Possibly it is the fastest in-place merge
algorithm known so far. We compared our algorithm to
the rotation-based algorithm contained in the C++ STL-
library [1] provided by SGI, which has a rather short
definition and is known as fast and efficient. The Pow-
ermerge algorithm performed generally less comparisons
than his STL-counterpart and consumed roughly 20%
less computing time.

Further we compared a Mergesort on basis of Power-
merge with Quicksort, Heapsort and other sorting algo-
rithms. We observed that Mergesort on basis of Pow-
ermerge always needed fewer comparisons than Quick-
sort and Quickersort. In any situation where the input
data had some presorted nature, our variant of Mergesort
was the clear winner compared to all other sorting algo-
rithms. The reason for this behavior is the property of
Powermerge to detect any kind of presorting efficiently.

Conclusion

We presented an efficient in-place merging algorithm
called Powermerge. Our algorithm has a much shorter
definition and is less complex than the algorithms pre-
sented in [3], [6], [7]. We could prove that our algorithm is
of linear time regarding the number of comparisons. Dur-
ing practical experimentation our algorithm has shown a
very good performance.

In the future, we plan to investigate the number of
element-moves performed by Powermerge. Further we
plan to analyze the average number of comparisons
needed by Powermerge. During our experimental work
we could observe that a Mergesort basing on Powermerge
always needed fewer comparisons than Quicksort. We
plan to give a formal proof for that.

References

[1] http://www.sgi.com/tech/stl.

[2] J. Bentley. Programming Pearls. Addison-Wesley,

Inc, 2nd edition, 2000.

[3] J. Chen. Optimizing stable in-place merging. Theo-
retical Computer Science, 302(1/3):191-210, 2003.

[4] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2nd edition,
2001.

[5] John Ellis and Minko Markov. In situ, stable merging
by way of the perfect shuffie. The Computer Journal,

43(1):40-53, 2000.
(6]

V. Geffert, J. Katajainen, and T. Pasanen. Asymp-
totically efficient in-place merging. Theoretical Com-

puter Science, 237(1/2):159-181, 2000.

J. Katajainen, T. Pasanen, and J. Teuhola. Practical
in-place mergesort. Nordic Journal of Computing,
3:27-40, 1 1996.

[7]

394

