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Abstract — Optimal tuning plays an important role in
operations or tuning of the complex process such as the
main steam temperature of the thermal power plant.
However, it is very difficult to maintain the steam
temperature of power plant using conventional
optimization methods, since these processes have the time
delay and the change of the dynamic characteristics in the
reheater.

Up to the present time, the PID controller has been used.
However, it is not easy to achieve an optimal PID gain
with no experience,since the gain of the PID controller
has to be manually tuned by trial and error. This paper
suggests immune algorithm based tuning technique for
PID Controller on steam temperature process with long
dead time and its results are compared with genetic
algorithm based tuning technique.
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1. INTRODUCTION

The operational strategy of electric power plants was
traditionally based upon the concept of generating
electric power with a reliability and little regard for
fuel economy, since fuel was cheap and abundant.
However, since the sixties, due to the world economic
crisis which gave rise to the oil crisis of the seventies,
the utility industry began to show more interest for a
deeper understanding of their own power plants with
the objective of improving their economic behavior [1].
In the fossil-fired power plant, high-pressure and high
temperature boilers are used for generation of electric
power large capacity. Also, steam temperature
deviation must be kept within +5°C in order to
maintain boiler operating efficiency and equipment life
time as well as to ensure safety. This control
performance is depended on air flow and fuel flow.
Start-up and shutdown procedures of the steam
temperature control loop including air flow control in
the electric power generation boilers are the most
challenging problems when developing new control
algorithms. The sequence of operations must be
successfully performed to maintain steam temperature
at the outlet of the superheater and the reheater
regardless of the changes in the plant load, properties
of the fuel, the conditions of the furnace through a
sequence of safe states. At the same time, many
variables must be monitored and controlled to ensure

operational safety [1, 2]. Moreover, minimal time and
energy losses during start up and run-up procedures
would be desirable.

Up to now, a Proportional — Integral — Derivative
(PID) controller has been wused in the steam
temperature control of boiler. However, it cannot
effectively control such a complicated or fast running
system, since the response of a plant depends on only
the gain P, I, D, and steam temperature process has a
long dead time. This paper addresses comparison of
immune algorithms based tuning and genetic algorithm
based tuning for power plant.

I1. CONTROL CHARACTERISTICS
FOR CONTROLLER DESIGN

A. Control Characteristic In The Thermal Power Plant

In the coal-fired thermal power plant, there are six
manipulated variables: main steam flow, feedwater
flow, fuel flow, air flow, spray flow, and gas
recirculation flow. In addition, there are five controlled
variables; generator output, main steam pressure, main

density, and -

reheater steam temperature [2, 8]. Therefore, the
coal-fired power plant is a multi-input and multi-output
system, which must alter the generator output in
response to changes in the load demand dictated by the
DCS in a central load dispatching office.

Fig. 1 shows a functional diagram of the control
system of power plant. In the thermal power plant,
strict control of the steam temperature is critical to
maintain safety and avoid thermal stress, which leads
to premature failure of the steam turbines [1, 2].

1) The heating value of coal, which cannot be
measured on-line, varies according to the coal source.
The coal source changes within a period ranging from a
week to a month and the heating value of the coal can
vary from approximately 90% to 110% of a typical
value during the course of a day. Furthermore, process
characteristics change slowly during a long operation.
These factors make it difficult to provide accurate
control of the heat input to the boiler.

(2) Since the coal pulverizing process proceeds slowly
and the heat capacity of coal-fired plants is larger than
that of oil or gas burning plants, the time delay of
changes in main steam temperature versus the changes
in fuel flow rate greatly exceeds the delay experienced
in oil or gas burning plants. That is, accurate steam
temperature control is very difficult to attain during

steam temperature, exhaust gas o,
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rapid load changes. If the load changes rapidly, the

pressure at that location for a given coal flow will be

Fig. 1. Power plant block diagram.

conventional PID controller adjusts the input variables
to values corresponding to the boiler load, causing
steam temperatures deviation from its set point (more
than 15°C).

(3) The main steam temperature control system and the
reheater steam temperature control system may
interfere with each other. This means that overall
temperature control comprises a multi-input and output
interference system. Hence, it is difficult to control
well both the main steam temperature and the reheater
steam temperature.

(4) Flow rates in water and steam fluctuate widely
during load-following operation. For example, both the
time constant and the gain vary by more than a factor
of two during a load-following operation.

B. Air Fiow Control System For Steam Temperature Control

For the most efficient operation on the power plant,
since the signal that dictates the quantity of air must be
related to the amount of air theoretically needed to
burn the fuel flowing to the burners, controlling the air
to maintain a defined steam-flow/air-flow ratio must be
well established. However, owing to the multiplicity of
burners in large boilers, difficulties arise in distributing
the air flow to individual burners, further problems
arise when a mixture of fuels is being burned. A
general control method is to regulate the air pressure
with respect to the steam flow. because the optimum

related to the boiler load. However, for the best control,
the parameters defined by the boiler designer may need
to be adapted in the light of practical operating
experience with the actual plant.

I11. PID CONTROLLER DESIGN FOR THE
POWER PLANT CONTROL

The combustion air flow demand resulting from the
boiler steam load is satisfied by positioning the
controlled device. The controlled device determines a
close approximation of the flow rate at constant fan
speed. However, this is true only if a high percentage
of total system pressure drop occurs across the
controlled device. That is, if this not true and the
upstream or downstream pressure varies, the flow rate
will vary. The closed loop feedback control is used in
order that the flow rate and control signal remain equal
to compensate for such changes. On the other hand, the
PID controller has been widely used due to its
simplicity and robustness in chemical process, power
plant, and electrical systems and many sophisticated
tuning algorithms have been tried an attempt to
improve the PID controller performance under such
difficult conditions. However, using only the P, I, D
parameters, it is very difficult to control a plant with
complex dynamics, such as large dead time, inverse
response, and highly nonlinear characteristics. Since
the PID controller is usually poorly tuned, a higher of
degree of experience and technology is required for
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tuning in the actual plant [5].

IV. PID CONTROLLER TUNING BY IMMUNE
ALGORITHMS

A. The Response Of Immune System

The immune system has two types of response:
primary and secondary. The primary response is
reaction when the immune system encounters the
antigen for the first time. At this point the immune
system learns about the antigen, thus preparing the
body for any further invasion from that antigen. This
learning mechanism creates the immune system’s
memory. The secondary response occurs when the
same antigen encountered again. This has response
characterized by a more rapid and more abundant
production of antibody resulting from the priming of
the B-cells in the primary response.

B. Antibodies In Immune System

Antibody is actually three-dimensional Y shaped
molecules which consist of two types of protein chain:
light and heavy. It also possesses two paratopes which
represents the pattern it will use to match the antigen.

C. Interaction Between Antibodies

The interaction among antibodies is important to
understand dynamic characteristics of immune system.
Consider the two antibodies that respond to the
antigens. These antigens stimulate the antibodies,
consequently the concentration of antibody Al and A2
increases. However, if there is no interaction between
antibody Al and antibody A2, these antibodies will

}
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Fig. 2. Structure of idiotypic on Jerne network.

have the same concentrations. Suppose that the
idiotope of antibody Al and the paratope of antibody
A2 are the same. This means that antibody A2 is
stimulated by antibody A1, and oppositely antibody Al
is suppressed by antibody A2 as Fig. 2. In this case,
unlike the previous case, antibody A2 will have higher

concentration than antibody Al. As a result, antibody
A2 is more likely to be selected.

This means that antibody A2 has higher priority over
antibody A1 in this situation.

D. Dynamics Of Immune System

In the immune system, the level to which a B cell is
stimulated relates partly to how well its antibody binds
the antigen. We take into account both the strength of
the match between the antibody and the antigen and the
B cell object’s affinity to the other B cells as well as its
enmity. Therefore, generally the concentration of i-th
antibody, which is denoted by &, is calculated as

follows [3]:

N

aZ mj,-5j (t)

dS‘;t(t) - j=1N 5.(¢) (3a)
_az miké‘k (t) + ﬂ'n,’ - }/i

k=1
ds. (1) 1
(O _ (35)

1+ exp(O.S - dL‘}t(QJ

where in Eq. (3), N is the number of antibodies, and
& and S are positive constants. m; denotes
affinities between antibody j and antibody i (i.e. the
degree of interaction), M, represents affinities between

the detected antigens and antibody i, respectively.
On the other hand, information obtained in lymphocyte
population can be represented by [10]:

S
QM=%
i=1

@,

_xij logxl.j ,

where N is the size of the antibodies in a lymphocyte
population, S is the variety of allele and xij has the

probability that locus j is allele 1. Therefore, the means
of information Qave(N) in a lymphocyte population
is obtained as the following equation:

M

Q,(N)

s . ®
Z—x..logxlj

l M
=Hz{i=l ij

j=t

1
Qave(N) = _A7

where M is the size of the gene in an antibody.
The affinity m op etween antibody o antibody [ is

given as follows:

1

" T U Qap)) ©

Qaf) = f(x)=[f,(x)+ £,(x) + £,(2)]

where Q(aff) is an information which obtained by
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antibody o and antibody S . If Q(of) =0, the
antibody «a and antibody f# match completely.
Generally m,, is given by range of 0-1.

E. Adaptive Multiobjective Optimization By Immune Algorithm

Conventional optimization techniques, such as
gradient-based and simplex-based methods, were
not designed to cope with multiple-objectives
search problems, which have to be transformed
into single objective problems prior to
optimization. On the other hand, evolutionary
algorithms are considered to be better tailored to
multiple-objectives optimization problems. This is
mainly due to the fact that multiple individuals are
sampled in parallel, and the search for multiple
solutions can be more effective.

Chromosome representation: there are three control
parameters to be determined for an adaptive optimal
control.

Objective functions: for the general control problem, it
is desirable to optimize a number of different system
performances. Consider a step input R(t) and the output
response Y(t). The following objectives are stated for
design.

- Minimizing the maximum overshoot of the

output
fi =0V=max Y(¢) @)
!

- Minimizing the settling time of the output
fr=8T =1, ®
such that 0.98R<Y(¢)<1.02R, V1 21¢,.
- Minimizing the rise time of the output
f=RT=4~1, ' €))
such that Y(#,)=0.1R and Y(t,) =0.9R.

0 T T T T T T T

E: Overshoot spec. [=01/Uo]/Uo)
D: Decay rate of amplitude (=02/U1)
R: rise time

TS: settding time

Fig. 3. Response specification.

C. Tuning Of The PID Controller By Adaptive Multiobjective
Based On Imnume Algorithms

In this paper, for the immune algorithm based control
reference model is used to computer fitness function as
shown in Fig. 3. On the other hand, multiobjective
functions are defined as the following equation.

1_‘0, ESal
1-5"”‘ , ay SE<b
—Qa
fEBab.e)=y (10)
1--L — b <E<q
¢ =b
1-0, o<k
1
fz(R,az)Cz)—m(—R—_jz—),
1
f3(TS;a3,c5) —W,
Function N(E;ap,byc): [fi(x)] s
inverse-triangular membership function,

fr(Riaz,c3) [ fo(x;)] and  f5(TS;a3,c3) [f3(x3)] are
sigmoid curve membership function as shown in Fig. 4.

Fig. 4. Membership function for multiobjective.

Using immune algorithm, controller function is defined
as

P, =[aﬁﬁ,@;)u—ﬁifsAPD/L}X”n BREE

i=1 i=1
I, D= samevalue,

1, if P,f is stimulation

i=1,.4, exception n
0, Others

Sy (PL):stimulation {

. P,' . .
L if F, is sup pression i=1..1, exception n (11)
0, Others

fo(PY=f.(P)Y=0, if P'is Hold.

S (P)): sup pression {

o, B integer constant (0~1) .

Fitness between antibody and antigen is defined by
objective function, f(x). When H(s) is close to zero,
fitness is good and is given as:
F) = w fi1(x) +wa fo(x2) + w3 f3(x3).
where,
x=[ERTS,x =Ea,b.6, % =Ra,0, %, =T8a,c3.,
W23 =Weight

(12)

andw; is weight function.

H{s)=1- n=max(f(x)) (13)

_n
n+ f(x)
V. SIMULATIONS AND DISCUSSIONS

A. Genetic Aigorithm Based Tuning Characteristic Of The PID
Controller

The transfer function with dead time is used as the
following equation.
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(14)

(15)

Real coded genetic algorithm is applied to tuning of

PID controller.

Object function

0.25

Fitness

~— best
--_average

Generation

Fig. 7. Fitness function by genetic algorithm.

Range for P, 1, and D is given by 1-50, 0-10, 0-2,
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respectively. Weight function is ; =[111]

PID=(16.119 0.00010546 0.87083] is obtained in
generation 47 through simulation. The value of
function is

£i(x,)=0.0071108, f,(x,) =0.0042675,
fi(x3) =0.036165, f(x)=0.047543, H(s) = 0.0156.

Fig. 7 shows fitness function obtained by genetic
algorithm and Fig. 8 represents is tuning result by
genetic algorithm. From Fig. 7, optimum fitness
function is achieved on about the 15th generation.

B. Immune Algorithm Based The PID Controller Tuning
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Fig. 10. Comparison of fitness variation between genetic algorithm
and immune algorithm.
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Fig. 11. Kp variation on genetic algorithm and immune algorithm.
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Fig. 13. Responsc characteristics of PID controller tuned by on

immune algorithm and genetic algorithm.

Table 1. Comparison of immune and genetic.

Item | Weigh Fitness

tfun. | Gen Fit Kp Ti Td
Ge | [1VH1]] 47 | 00156 | 16.119 | 0.000106 | 0.8708
Im | [L11] 29 | 0.0111 | 23.852 | 0.000067 | 1.7733

Fig. 9 shows fitness variation depend on «, £ in

immune algorithm. Fig. 10 shows variation of fitness
function between genetic algorithm and immune
algorithm. Figs. 11 and 12 represent variations of
Proportional gain (Kp) and Integral gain (Ti) and Fig.
13 is response characteristics of PID controller tuned
by on immune algorithm and genetic algorithm.

V1. CONCLUSION

To design an optimal controller that can actually be
operated on the air flow of generating system, this
paper focuses on comparing the characteristics of the
PID controller tuned by genetic algorithm and the
result of PID controller based on immune algorithms
for developing tuning technology on the power plant
control.

For this purpose, we suggest an immune algorithm
based multiobjective tuning method for the PID
controller. Parameters P, I and D encoded in antibody
are randomly allocated during selection processes to
obtain an optimal gain for plant. The object function
can be minimized by gain selection for control, and the
variety gain is obtained. The suggested controller is
compared with genetic algorithm based results in the
power plant.
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