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Abstract — Neural oscillator is applied in oscillatory
systems (Analysis of image information, Voice
recognition. Etc...). If we apply established EBPA
(Error back Propagation Algorithm) to oscillatory
system, we are difficult to presume complicated
input’s patterns. Therefore, it requires more data at
training, and approximation of convergent speed is
difficult. In this paper, I studied the neural oscillator
as synchronized states with appropriate phase
relation between neurons and recognized the Korean
alphabet using Neural Oscillator Phase model
Synchronization.

I. INTRODUCTION

Oscillatory systems are ubiquitous in nature and,
particular, in neuron and brain dynamics. Information
processing system of neurons in brain has rhythmic
activity and synchronization of neuronal firing. However
much of neural network research still focuses on non-
oscillatory sigmoidal neurons. The precise timing of
neuronal firing is usually neglected.

Therefore, to understand possible neuro-computational
properties of oscillatory neural networks we consider an

extreme case when each neuron exhibits periodic activity.

Such networks can be described by phase models.
Oscillatory neural network has the same neuro-
computational properties as the standard Hopfield
network.
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Fig. 1.Neural Oscillator
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In this paper we suggest an implementation of the
recognition systems of Korean alphabet using neural
oscillator phase model synchronization. Such a success
has been achieved when we consider neuron firing
whose activity is near a bifurcation, which often occurs
when the membrane potential is near the threshold value.

I1. Neural Oscillator Phase Model

A. Canonical Neural of Weakly Connected Neurons

The assumption of weak neuronal connections is based
on the observation that the averaged size of a
postsynaptic potential is less than 1[mV], which is small
in comparison with the mean size necessary to discharge
a cell (around 20{mV]) or the averaged size of the action
potential (around 100[mVY).

If connection is weak, mathematical model represent
as following.

i=f(x,A)+€) g;(x,x;,£) (1)
J=l

Here each vector X, denotes membrane potential, gating

variables, and other electrophysiological variables of the
i-th neuron. Each vector j, denotes various biophysical

parameters of the neuron. The function f describes
connections between the neurons. The dimensionless
parameter £ <<1 is small, reflecting the strength of
connections between neurons. Eq(1) can be transformed
into the canonical form(Eq(2)). Particulars of the
functions f and g; and the value of the parameters 4,

do not affect the form of the canonical model, bat only
the values of the parameters r, and s, . The canonical

model(2) has only one non-linear term, namely, y f , and
two internal parameters, r, and S5

The Cohen-Grossberg-Hopfield convergence theorem
applies, which mean that canonical model has Eq(2).
n
3
Yi=r-y, +zsijyj 2
j=t
The Cohen-Grossberg-Hopfield convergence theorem
represent as following.



n 1 1 n
E(»)=->.(ny, —Zy?)—gzsi,y,-y,» 3)
i=1 ij=1
Eq(3) is a potential function for Eq(2) in the sense that
y; =-0E/ oy, -

B. Neural Oscillator Phase Model

Usually, membrane potential between neuron and
neuron shows oscillatory phenomena. If do that variables
change continuously in such periodic shock, Eq(1) that
indicate weakly connected network can convert into

Eq(4).
z, =(r, +iw,)z, —zilzil2 +Zcijzj €))]
j=1

Here, i=+/-1, and each complex variable z

describes oscillatory activity of the ith neuron. If Eq(3)
all neurons have equal frequencies @, =..-=@, and

the connection matrix C =(c,) is ¢, =cy, then the

network always converges to an oscillatory pattern.

Suppose that neurons in the weakly connected
network(1) exhibit periodic spiking; see Figure 2(Morris-
Lecar Model). Morris-Lecar Model is a figure what
reaction Neurons represent in case external stimulation is
given. If they have nearly equal frequencies, then the
network can be transformed into the phase canonical

model(Eq(6)).
pi=w,+Y H(p,-9) (6)

j=1
Where each @, is a one-dimensional variable that

describes the phase of the ith oscillator, and each A ; is

a connection function.

Fig. 2. This figure exhibit periodic oscillating(Morris-
Lecar Model).

C. Synchronization of the Phase Model
The phase model] that Eq(6) can be transformed into
the Eq(7) by ¢/ =-8U /0.

1 <&
U(¢) = EZRIJ(¢! _¢i) (7)

ij=1
Where R,.j is the antiderivative of H i that is,

R,;. =H, . We see that if the matrix of synaptic

connections is symmetric, then the network synchronizes
with a certain pattem of phase relations, which is
determined by Eq(6).

Suppose we are given a set of key vectors to be
memorized.

fk =(§]k3§2k;""§:)9 ‘f,-k =il’k =Os"';p (8)

where gi" =¢ ;k means that the ith and the jth oscillators

are in-phase (p, = ¢ ), and &f =—-£F means they are

anti-phase (¢, = @, +7).

Fig. 4. Pattern to be Recognized

We use the learning rule to train the network with
three images “JF, “Lf’, and “LF’ depicted in Fig. 3. A
Hebbian learning rule is the simplest one.

1
8; = —f:é-"&f ©
(e

When the initial phase distribution corresponds to a
distorted image “/”, the oscillators lock to each other
with an appropriate phase relation; see Fig. 4. We also
plot two outputs, ¥'(3) and V(9,), and their phase

deviations, ¢, and ¢,.

D. Recognition of pattern using synchronization of
the Phase Model

We consider a dynamical system
8 =Q+1(9)Y s, V(9 —-’25) (10)
j=l

Here 9 is the phase of the voltage controlled neural
oscillators. The connection matrix can be expressed
compactly as c; :E—ﬁ_ for all / and j, where C;ls a
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complex synaptic coefficient, and ¢ means complex
conjugation.
We are given a set of key vectors to be memorized

4:7} = (éz‘ < 13} ), 6;‘7} ==l (11

E e
To memorize such phase patterns we can apply the
complex Hebbian learning rule(Eq(9)).

Recognition of the patterns can be represented as

Time(0) Time(0.3) Time(0.6)

Time(6.9) Time(7.2) Time(7.5)

Time(8.1) Time(8.7)

Time(7.8)

Time(8.4)

i

Time(9.0) Time(9.3) Time(9.6) Time(9.9)
Fig. 5. Pattern recognition of “7/’ by neural oscillator
with Hebbian learning rule

%

Fig. 6. Output ¥ (.9) of neural oscillators
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Fig. 6. The proceeding of Phase Synchronization

Fig. 5 represented result that recognize pattern using
phase synchronization of neural oscillator. Each pixel is

70 spaces all to &7, £7, ..., and £7. All times that

take in awareness of pattern is 10 seconds and sampling
time 1s 0.3 seconds.

[11. CONCLUSION

In this paper I suggested recognition of the Korean
alphabet using Neural Oscillator Phase model
Synchronization. Specially, we could get more detailed
result comparing neural oscillator with general neural
network. But there are still some issues that have been
takes much time that take in pattern recognition. Neural
oscillator will be applied to systems(Analysis of image
information, Voice recognition. Etc...) that oscillation is
accompanied.
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