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Abstract-An algorithm based on direct implementation
of variable structure systems theory approach is proposed
for on-line training of multilayer perceptrons. Network
structures which have multiple inputs, single output and
one hidden layer are considered and the weights are
assumed to have capabilities for continuous time
adaptation. The zero level set of the network learning
error is regarded as a sliding surface in the learning
parameters space. A sliding mode trajectory can be
brought on and reached in finite time on such a sliding
manifold. Results from simulated on-line identification
task for a two-link planar manipulator dynamics are also
presented.

I. INTRODUCTION

Variable structure systems (VSS) with sliding mode were
first proposed in the early 1950s as a simple robust control
approach. Recent studies have accentuated that the robustness
and stability properties of intelligent control strategies can be
also analyzed through the use of sliding mode control (SMC)
theory [1]. The results in [2] have shown that the convergence
properties of the gradient-based training algorithms widely
used in artificial neural networks can be improved by an
indirect implementation of SMC approach. Direct use of SMC
strategy for adaptive learning in Adaline networks has been
suggested in [8] and [10] and control applications of the
method considered in [8] have been studied in [3]. An on-line
learning algorithm for training of multilayer perceptrons, has
been recently proposed by G. G. Parma et al. [6]. In [9] the
application of the above learning algorithm in neuro-adaptive
control schemes has been investigated.

In the present paper the sliding mode strategy for adaptive
learning in analog Adaline networks proposed in [8] is further
extended to more general classes of multilayer neuron
arrangements which do not have the limited approximation
capabilities of early proposed Perceptron and Adaline
networks. The imposed here limitation related to the required
scalar network output cannot be considered as too restrictive
with respect to the applicability of the proposed algorithm
because it is always possible to have structures consisting of
two or more multilayer feedforward neural networks (FNN)
sharing the same inputs. The main difference of the developed
new algorithm from the one presented earlier in [6] is that it
makes use of only one sliding surface instead of two which
makes it simpler.

The main body of the paper contains four sections.
Section II presents the proposed SMC-based adaptive learning
algorithm for analog FNN with a scalar output. Results from
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simulation experiments are shown in Section III. Finally,
section IV summarizes the findings of this work.

II. ON-LINE WEIGHTS ADAPTATION IN MULTILAYER
FEEDFORWARD NETWORKS WITH A SCALAR OUTPUT BASED
ON SLIDING MODE CONCEPT

A. Initial Assumptions and Definitions

Consider the two-layered feedforward neural network
shown on Figure 1.

Fig. 1. Multilayer perceptron network with a scalar output

We will use the following definitions:
X@®= [xl ®), - 5x, (t)]T - vector of the time-varying input
signals augmented by the bias term.
Y,(H= [ Y@, s Vi, (t)]T - vector of the output signals of
the neurons in the hidden layer.
y(¢) - scalar signal representing the time-varying output of the
network.
Wl(t)(nxp) - matrix of the time-varying connections’ weights

between the neurons in the input and the hidden layer, where
each matrix’s element wi, (f) means the weight of the

connection of the neuron i from its input J .
W2(t)ry = [W2,(2),.., w2, ()] - vector of the time-varying

connections’ weights between the neurons in the hidden layer
and the output node. Both WU oy and W21y are

considered augmented by including the bias weight
components for the neurons in the hidden layer and the output
neuron respectively.

f()- nonlinear, differentiable, monotonously increasing
activation function of the neurons in the hidden layer of the
network. The neuron in the output layer is considered with a
linear activation function.
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An assumption is made that the input vector X(¢) and
it’s time derivative are bounded, i.e.

X)) = (X2 @) +...+ x2(r) < B, Ve )
X0 = () +..+32() < B, Vit

where B, and B, are known positive constants.

[t will be assumed that, due to the physical constraints, the
magnitude of all vectors row W1,(f) constituting the matrix

W1i(t) and the elements of the vector W2(f) are also
bounded at each instant of time ¢ by means of

L] = W2 O+ Wi, (1) + ..+ WL, () < B, Vi
|w2,(0)| < By, Vt 2)

for some known constants By, and By, , where i=1,2,...,n.
The scalar signal y,(r) represents the time-varying
desired output of the network. It will be assumed that y, ()

ancl y,(7) are also bounded signals, i.e.

lv.®|<B,,. |7.®|<B, Vi 3)

where B, and By.d are positive constants.
d

The output signal y,, of the i -th neuron from the hidden

laver and the output signal of the network y(¢) are defined
as

4
yu =1 (Z wl, ; x,} @)
j=l
y(O)=Y w2,y %)
i=1

It is assumed that the derivative of the neurons activation
furiction is also bounded, i.e.

0<A,.(t):f'(zp:wl,.ijj]SBA i, j (6)

We define the learning error e(¢) as the scalar quantity
obtzined from

e(t)=y(@)-y,(0) (7

B. The SMC-based On-line Learning Algorithm

Using the SMC approach, we define the zero value of the
learning error coordinate e(#) as a time-varying sliding

surface, i.e.
S(e())=e(t)=y()—y,(1)=0 (®)

which is the condition that guarantees that the neural network
output y(t) coincides with the desired output signal y,(¢)
for all time ¢ >, where ¢, is the hitting time of e=0.

Definition 2.1: A sliding motion will have place on a
sliding manifold S(e(?)) =e(r)=0, after time 7, if the
condition S(£)S(f) = e(r)é(f) <0 is true for all ¢ in some
nontrivial semi open subinterval of time of the form
[£,1,) = (0,1, )

The learning algorithm for the neural network weights
W1(t) and W2(r) should be derived in such a way that the

sliding mode condition of the above definition will be
enforced.
Let us denote as "sign(e(s))" the signum function,

defined as follows:

1 fore(t)>0
0 fore()=0 ®
-1 fore(r)<0

sign(e) =

To enable §=0 is reached, we have the following
theorem:

Theorem 2.2: If the learning algorithm for the weights
W1(t) and W2(¢) is chosen respectively as

2.x.
Wl = —( ;;; Ja sign(e) (10)
W2, =—| 2H_ g sign(e) (11)
' Yy,

with o being sufficiently large positive constant satisfying

a>nB,B,B;B,, +B, 12)

then, for any arbitrary initial condition e(0), the learning

error e(t) will converge to zero during a finite time f, which

may be estimated as

i )

h = (13)
a-nB,B,,B, B, ~B,

and a sliding motion will be maintained on e=0 for all
t>1,.

The proof of the theorem 2.2 is presented in [7].
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C. Bounded noise added to the network inputs

Let us consider now an augmented vector-valued norm-
bounded external perturbation input, denoted by
H(t)=(,(),...,n,(1)) , which is added to the input vector

X (5). We will assume here that its last element n, ® equals

zero. This means that the constant input to the bias weight is
considered as a fixed value without an influence of
perturbation signals on it.

1t is assumed also that the perturbation input H (¢) is not

“larger” than the input X(¢), i.e.,

||H(t)||=,/nf(z)+...+q; <B,<B, Vi (14)
H(z) is assumed to be also bounded i.e.
|E @)= JRO+. 42 <B, vt (15

The perturbed learning error &(t) = y(f)— y,(f) is now as
follows

&= iwzif[ﬁWIi,j(xj +77j)]'yd(t) =

i=1

=S W [MOEO+EO)]-30 (19

Let us consider the following perturbed adaptation law
for the weights in FNN:

il = w2,(x; +7,)
Yoo (X+HY (X +H)

W2, = —( }%}‘;’;ﬂ )a sign(é)

Ja sign(é) (17

(18)

where

}A’H, = f[ZWIi,j(xj +77j)i|’ and
Ty ()= 3, (0 5, 0]

The robustness result is summarized in the following
theorem whose proof is similar to that of Theorem 2.2.
Theorem 2.3: A sliding motion will have place on the
zero learning error manifold of a FNN including a perturbed
input vector if the adaptation law for the weight vectors wl, ;

and w2, is chosen as in (17) and (18) with  being a positive
constant satisfying

@ >nB,By By, (B +B,)+8, (19)

For any arbitrary initial condition &(0), the perturbed

learning error will converge fo zero in 7, , estimated by

f < ‘é(O)l
» <
a-nB B, B,,(B,+B,)-B,

¥

(20)

inspite of all possible assumed (bounded) values of the
perturbation inputs and their time derivatives. Moreover a
sliding motion is sustained on &(¢) =0 forall ¢+ >7, .

III. SIMULATION RESULTS

FNN are commonly used for on-line modeling,
identification and adaptive control purposes in case variations
in process dynamics or in disturbance characteristics are
present. In this section, the effectiveness of the proposed on-
line learning algorithm is evaluated on the example of on-line
forward dynamics identification task of a simple two-link
planar manipulator. The manipulator was modeled as two
rigid links of length 0.5 m each with point masses equal to 10
kg and 8 kg placed at the distal ends of the links. The dynamic
equations of the manipulator can be found in [4]. A
decentralized control strategy with independent PID joint
controls was implemented during the experiment.

Two identical FNN structures (one per joint) having 25
neurons in the hidden layer each were used and the so-called
series-parallel identification model [5] was implemented. The
manipulator coupled dynamics was also taken into account, so
each of the two neural identifiers was receiving on its inputs
signals from both manipulator joints. The value used for the
variable structure gain « was set to a =5. To alleviate the
“chattering” phenomena the following standard substitution
was adopted for the ideal switch function.

e(r) @)

szgn e(t) ~ W

with 6 =0.05.
A typical trajectory task was considered during which the
manipulator arm was required to follow reference trajectories

g, and g, . They were selected as:

g, =—0.77+0.8sin((27/4.8) - 7/2)

q,, =—0.8—0.8sin((27¢/4.8) - 7/2) (22)

The results from the simulations are shown on Figure 2.
The following denotations are used: dash-doted lines are the
joints actual trajectories, neural model outputs and joints
control signals are plotted with solid lines. The neural network
learning (tracking) error response e (¢) for each of the two

robot joints is shown to converge to zero fast.

For comparison and network learning performance
evaluation, simulations were also carried out with the input
signals subject to a computer generated additive bounded
noise. The generated noise signals for the two inputs of the
manipulator links were discrete-time stochastic processes
normally distributed at each instant of time with zero mean
and standard deviation =1 and o =0.1 for the first and
second robot joint respectively. The simulation results are
shown on Figure 3.
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Fig. 3. Forward dynamics identification with bounded noise

The value of a was set to be o =12. The noisy states
were used to confirm the sliding mode adaptive strategy in
accordance with (17) and (18).

IV. CONCLUSIONS

In this paper a new on-line learning algorithm for analog
FNN with a scalar output has been presented. It is based on
direct implementation of VSS theory. The algorithm robustly
drives the leaming error to zero in a finite time. Its
convergence has been analyzed based on the task for on-line
forward dynamics identification of a two-link robot
manipulator. The presented simulation results show the
effectiveness of the proposed approach.
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