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ABSTRACT

Differential learning relies on the differentiated values of
nodes, whereas the conventional learning depends on the
values themselves of nodes. In this paper, I elucidate the
differential learning in the framework of maximum likeli-
hood learning of linear generative model with latent vari-
ables obeying random walk. I apply the idea of differential
learning to the problem independent component analysis
(ICA), which leads to differential ICA. Algorithm deriva-
tion using the natural gradient and local stability analysis
are provided. Usefulness of the algorithm is emphasized in
the case of blind separation of temporally correlated sources
and is demonstrated through a simple numerical example.

1. INTRODUCTION

Independent component analysis (ICA) is a statistical method,
the goal of which is to learn non-orthogonal basis vectors
from a set of observation data with basis coefficients be-
ing statistically independent. In the framework of linear
transform, ICA finds a representation of the form

2": a;isi(t)

= As(t), (1)

z(t) =

where ¢ € R" is the observation data (which is given) and
A = [a1---ap] € R™™™ (which is known as a miring ma-
triz in source separation) consists of basis vectors {a;} and
s = [s1--- $a] is an n-dimensional vector containing basis
coeflicients {s;} (which are called independent components
and are also known as sources).

It is known that ICA performs source separation, the
goal of which is to restore unknowns sources without resort-
ing to any prior knowledge, given only a set of observation
data. Source separation is achieved by estimating the mix-
ing matrix A or its inverse W = A™! (which is known as
demizing matriz).

Let y(t) be the output of demixing transform, i.e.,

y(t) = Wa(t). (2)

Either maximum likelihood estimation or the minimization
of mutual information leads to the well-known natural gra-
dient ICA algorithm {1} whose updating rule has the form

W(t+1) =W +n{I-o@wOW O} WE,  ©)

where 7 is a learning rate and @(y) = [p1(y1) - @n(ya )] is
an n-dimensional vector, each element of which corresponds
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__dlogpi(y:)

to the negative score function, i.e., pi(y;) = o
where p;(-) is the hypothesized probability density function
for s;. More details on ICA or source separation can be
found in [2, 3] (and references therein).

In a wide sense, most of ICA algorithms based on unsu-
pervised learning belong to Hebb-type rule or its general-
ization with adopting nonlinear functions. Motivated from
differential Hebb’s rule [4] and differential decorrelation [5],
we develop an ICA algorithm which employs differential
learning where learning resorts to differentiated values (or
difference of values in discrete-time counterpart).

Differential Hebb’s rule was studied as an alternative to
the Hebb’s rule The motivation of the differential Hebb’s
rule is that concurrent change, rather than just concurrent
activation, more accurately captures the concomitant varia-
tion. The differential learning was introduced in the frame-
work of ICA [6] and decorrelation [5] recently . In this paper
we derive a differential ICA algorithm in the framework of
maximum likelihood estimation and random walk model.
In fact, our differential ICA algorithm can be viewed as a
simpler form of ICA algorithms which exploit the temporal
structure of sources (7, 8].

2. RANDOM WALK MODEL FOR LATENT
VARIABLES

Given a set of observation data, {x(t)}, the task of learn-
ing the linear generative model (1) under a constraint that
latent variables being statistically independent, is a semi-
parametric estimation problem. The maximum likelihood
estimation of basis vectors {a;} is involved with a proba-
bilistic model for latent variables which are treated as nui-
sance parameters.

In order to show a link between the differential learning
and maximum likelihood estimation, we consider a random
walk model for latent variables which is a simple Markov
chain, i.e.,

si(t) = st — 1) + :(t), C(4)
where the innovation ¢;(t) is assumed to have zero mean
with a density function gi(e;(t)). In addition, innovation
sequences {¢;(¢)} are assumed to be mutually independent.

Let us consider the latent variables s;(t) over N-point
time block. We define the vector s, as

8= [s:(0),.s:(V — DI”. )

Then the joint probability density function of s; can be



written as

Di (Si(O), e

I1 sctolsict - 1),

pi(s;) y8i{N — 1))

i

(6)

where s;(t) = 0 for t < 0 and the statistical independence
of innovation sequences was taken into account.

It follows from the random walk model (4) that the con-
ditional probability density of s;(¢) given its past samples
can be written as

pilsi(si(t —1)) = qile(t)). (7)
Combining (6) and (7) leads to
N-1
pi(s) = H gi{ei(t))
= H g (5:(1))) , (8)

where s;(t) = s;(t) — si(t — 1) which is the first-order ap-
proximation of differentiation.

Take the statistical independence of latent variables and
(8) into account, then we can write the joint density p(s,, . ..
as

Il

sz(s )
H (si(®)) -

The factorial model given in (9) will be used as a optimiza-
tion criterion to derive the proposed algorithm.

p(s),.-.,8,)

(9)

u:? i

3. DIFFERENTIAL ICA ALGORITHM

Denote a set of observation data by

X ={z,,....z,} (10)
where
z, = {z:(0),...,z:;(N - 1)}. (11)
Then the normalized log-likelihood is given by
- logp(¥|4)
= —logldet A] + 7 logp(sy, ., 5,)
1 N—-1 n
= —log|det A| + i ;} ; log g:(s;(t)). (12)
Let us denote the inverse of A by W = A~'. The

estimate of latent variables is denoted by y(t) = Wa(t).
With these defined variables, the objective function (that
is the negative normalized log-likelihood) is given by

J2

—%logp(XlA)

1 =
—log |det W| — = log gi(yi(t)). (13)

t=0 i=1

,_.
-~

15,)
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where s; is replaced by its estimate y;.

For on-line learning, the sample average is replaced by
instantaneous value. Hence the objective function (13) be-
comes

— log |det W] — Z log ¢ (yi (t)),

i=1

Tz = (14)

Note that objective function (14) is slightly different from
the one used in the conventional ICA based on the mini-
mization of mutual information or the maximum likelihood
estimation.

We derive a natural gradient learning algorithm which
finds a minimum of (14). To this end, we follow the way
that was discussed in [1, 9, 10]. We calculate the total
differential d73(W) due to the change dW

dJs = J3(W +dW) — Jz(W)
n
= d{-log|det W|} +d {— > log qi(yi(t))}<15)
i=1
Define
() — _Glogai(yi)
Pilys) = ay] (16)
and construct a vector p(y’) = [p1(¥1) - ¥n (y;)]T
With this definition, we have
d { - log gi(y} (t))} > @i(yi(t))dyi(t)
i=1 i=1
= W)Y ). Q)
One can easily see that
d{~logidet W|} = tr {dWW '}, (18)
Define a modified differential matrix dV by
dV =dWw L (19)

Then, with this modified differential matrix, the total dif-
ferential d.73(W) is computed as

dJs = —tr {dV} + ¢ (' (1))dVy'(t). (20)
A gradient descent learning algorithm for updating V is
given by
_ dJs3
Vit+1) = V(I)—mn—— v

n{I-e@/®y7®}. (@)
Hence, it follows from the relation (19) that the updating
rule for W has the form

W(t+1) = W)+ {T- o' O O} WE). (22)

Remarks

e The algorithm (22) was originally derived in an ad
hoc manner in [6]. Here we show that the algorithm
(22) can be derived in the framework of maximum
likelihood estimation and a random walk model.
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Figure 1: Evolution of performance index: (a) conventional ICA; (b) differential ICA.

o The algorithm (22) can be viewed as a special case of
temporal ICA algorithm [7] where the spatiotemporal
generative model was employed.

In the conventional ICA algorithm, the nonlinear func-
tion ;(-) depends on the probability distribution of
source. However, in the differential ICA algorithm,
the nonlinear function is chosen, depending on the
probability distribution of €;(t) = s;(t)—si(t—1), i.e.,
the difference of adjacent latent variables in time do-
main. In general, the innovation is more non-Gaussian,
compared to the signal itself. In this sense, the differ-
ential ICA algorithm works better than the conven-
tional ICA algorithm when source was generated by a
linear combination of innovation and its time-delayed
replica (e.g., moving average). This is confirmed by
a simple numerical example.

As in the flexible ICA {10], we can adopt a flexible
nonlinear function based on the generalized Gaussian
distribution.

4. LOCAL STABILITY ANALYSIS

The differential ICA algorithm (22) can be obtained by re-
placing y(t) by ¥’(¢) in the conventional ICA algorithm (3).
Thus the local stability analysis of the algorithm (22) can
be done similarly, following the result in [1]. As in [1], we
calculate the expected Hessian E{dzjs} (in which the ex-
pectation is taken at W = A™!) in terms of the modified
differential matrix dV. For shorthand notation, we omit
the time index ¢ in the following analysis.
The expected Hessian E{d*7:} is given by

E{d*J3} E {y'dvT@dy’ + <pT(y’)dde’}

E {y'dVT@dVy’ + wT(y')dVdVy’}

Z [U?Iij (d’l)ji)2 +- dvijdvji]
J#i

+ Z(Ci +1) (dvie)?, (23)

where the statistical expectation is taken at the solution so
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that {y;} are mutually independent and

@1(v1) 0
® = : : (24)
0 ‘Pn(y;t)
. dei(y;
@ilyl) = %?—2 (25)
o = E{y?} (26)
ki = E{oi(yi)} (27)
G = E{wlewh} (28)
It follows from (23) that E{d®Js} is positive if and only if
ki > 0 (29)
G+1 > 0 (30)
U?O’?Kﬂij > 1. (31)

5. NUMERICAL EXAMPLE

We present a simple numerical example to show the useful-
ness of our differential ICA algorithm which is described in
(22). Three independent innovation sequences were drawn
from Laplacian distribution. Each innovation sequence was
convolved with a moving average filter (with exponentially
decreasing impulse response) in order to generate colored
sources. These sources were linearly mixed via 3 x 3 mixing
matrix A

We compare the performance of our differential ICA
algorithm with that of the conventional natural gradient
ICA algorithm in terms of the performance index (PI) which
is defined as

i} 1)

=g (3
)

n

(3

k=1
where gi; is the (z, j)-element of the global system matrix
G = WA and max; g;; represents the maximum value

Igtk|2
max; |gi; |2

|gwil®

max; |g;i|? (32)
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Figure 2: Hinton’s diagram for the global matrix G: (a) conventional ICA; (b) differential ICA. Each square’s area represents
the magnitude of the element of the matrix G. White square is for positive sign and black square is for negative sign.

among the elements in the ith row vector of G, max; g;:
does the maximum value among the elements in the ith
column vector of G. The performance index defined in (32)
tells us how far the global system matrix G is from a gen-
eralized permutation matrix.

It is expected that the conventional ICA algorithm would
have difficulty in separating these sources because they are
close to Gaussian. The differential ICA algorithm inher-
ently resort to the innovation sequence rather than the

source itself (since it is motivated by a simple Markov model).

The result of a numerical example is shown in Fig. 1.

6. DISCUSSION

In this paper we have presented a natural gradient learning
algorithm for differential decorrelation, the goal of which is
to minimize the correlation between differentiated random
variables. We showed that the differential decorrelation al-
gorithm could be derived from learning a linear generative
model by the maximum likelihood estimation under a ran-
dom walk model. We also discussed a differential version
of the natural gradient ICA algorithm and showed that it
could also be derived under the random walk model. The
differential correlation algorithm (22) or the differential ICA
algorithm (22) could be generalized by adopting higher-
order differentiation. This generalization is currently under
investigation.
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