2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju, Korea

Simultaneous Approach to Fuzzy Clustering and
Quantification of Categorical Data with Missing Values

Katsuhiro Honda, Yoshihito Nakamura, Hidetomo Ichihashi
Graduate School of Engineering, Osaka Prefecture University
1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan
honda@ie.osakafu-u.ac.jp

Abstract— This paper proposes a simultaneous applica-
tion of homogeneity analysis and fuzzy clustering with in-
complete data. Taking the similarity between the loss of
homogeneity in homogeneity analysis and the least squares
criterion in principal component analysis into account, the
new objective function is defined in a similar formulation
to the linear fuzzy clustering with missing values. Numer-
ical experiment shows the characteristic properties of the
proposed method.

Keywords— Fuzzy clustering, homogeneity analysis, miss-
ing values.

I. INTRODUCTION

Simultaneous approaches to multivariate data analy-
sis and fuzzy clustering have been applied to knowledge
discovery from large scale databases because the local
model derived in each cluster effectively reveals the lo-
cal features of non-linearly distributed high-dimensional
data sets. Fuzzy c-Varieties (FCV) clustering proposed
by Bezdek et al. [1] [2] is regarded as a simultaneous ap-
proach to principal component analysis (PCA) and fuzzy
clustering since FCV partitions a data set into several lin-
ear clusters using linear varieties as prototypes of clusters
and the basis vectors of the prototypical linear varieties
are often identified with local principal component vec-
tors.

In spite of the usefulness, however, they often suf-
fer from missing observations in real world applications.
Honda et al. [3], [4] proposed a modified linear fuzzy clus-
tering algorithm in which the objective function was re-
garded as the least squares criterion for local PCA. While
the objective function of the FCV algorithm is composed
of the distances between data points and prototypical
linear varieties, the same solution can be derived from
the least squares criterion that achieves “component-wise”
lower rank approximation of the data matrix. However,
the algorithm is available only when the data matrix con-
sists of numerical variables.

This paper proposes a new approach to the quantifi-
cation of incomplete categorical data, which constructs
multiple uni-dimensional scales by partitioning a set of
samples into clusters. Homogeneity analysis [5], [6] is a
quantification technique for representing the structure of
non-numerical multivariate data and tries to minimize de-
partures from perfect homogeneity that are measured by
the Gifi loss function. The minimization of the Gifi loss
function is based on the approximation of matrix, so the
algorithm is similar to that of PCA with least squares cri-
terion. In the proposed method, samples are partitioned

by introducing membership values into the Gifi loss func-
tion and missing values are ignored by multiplying “0”
weights to corresponding deviations in component-wise
approximation.

Finally, the characteristic features of our method are
shown in numerical examples.

II. LINEAR FuzzZy CLUSTERING WITH MISSING VALUES

Let X = (z;;) denote an (n x m) data matrix consisting
of m dimensional observation of n samples. The matrix is
often denoted as X = (&1, -, i:n)T using m dimensional
column vectors &; composed of the i-th row elements of
X. In the following, column vectors are shown in bold.

FCV is a clustering method that partitions a data set
into C linear fuzzy clusters. The objective function of
FCV consists of distances from data points to p dimen-
sional prototypical linear varieties spanned by linearly in-
dependent vectors a. as follows [1], [2]:
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where u.; denotes the membership degree of the data point
&; to the c-th cluster and T represents the transpose of
the vector. b, is the center of the c-th cluster. The weight-
ing exponent 8 is added for fuzzification. The larger 8 is,
the fuzzier the membership assignments are. Because the
optimal a.x are eigenvectors corresponding to the largest
eigenvalues of the generalized fuzzy scatter matrix, the
vectors are regarded as the fuzzy principal component
vectors extracted in each cluster considering the member-
ships [7].

Honda et al. [3], [4] proposed to modify the objective
function using least squares criterion and applied them to
the analysis of incomplete data sets. Introducing member-
ships u.;, the least squares criterion for fuzzy local PCA
is defined as

C
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where U, = diag(u,1, - -, Uen) and tr represents the trace
of the matrix (the sum of the diagonal entries). Y, = (yei;)
denotes the lower rank approximation of the data matrix
X in the c-th cluster,

Y, = F,A] +1,b/, (4)
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where F, = (f.ik) is the (n X p) score matrix and A, =
(@1, -, Gcp) is the (mxp) principal component matrix of
the c-th fuzzy cluster. 1, is n dimensional vector whose
elements are all 1. The objective function achieves the
lower rank approximation of the data matrix and derives
the same solution as the FCV algorithm because the prin-
cipal component vectors a1, - -, @cp and the cluster cen-
ter b. span the same prototypical linear varieties.

By the way, Eq.(3) can also be expressed as
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This formulation means that the clustering criterion is
composed of the component-wise approximation of the
data matrix. So, we can handle missing values in the data
matrix by considering the approximation of the observed
elements only.

In [3], [4], missing values in the data matrix are ignored
by multiplying “0” weights over the corresponding recon-
struction errors. Considering binary weights d;;,

1
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the objective function of FCV with missing values is de-
fined as
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where the entropy term is added for fuzzification instead of
the weighting exponent in the standard FCV algorithm.
The fuzzification technique is called ”Regularization by
entropy” [8]. The larger A is, the fuzzier the membership
assignments are.

To obtain a unique solution, the objective function is
minimized under the constraints that

F'UF.=1 ; ¢=1,---,C, (8)
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and A;FAC is orthogonal. The optimal solution is derived
based on the alternating least squares.

However, this approach is useful only when the data
matrix is composed of numerical variables and we cannot
apply the algorithm to the analysis of categorical data.
In the next section, we enhance the idea to the simulta-
neous approach to fuzzy clustering and quantification of
categorical data.

III. SIMULTANEOUS APPROACH TO Fuzzy
CLUSTERING AND HOMOGENEITY ANALYSIS

A. Homogeneity Analysis

Suppose that we have collected data on n objects on
m categorical variables with K;,j = 1,---,m categories.
The categories of each variable are often nominal, i.e., only
the classes formed by the objects play a role. These non-
numerical variables are represented by indicator matrices.
Let G; denote the n x K indicator matrix corresponding
to variable j and its entries be the binary variables as
follows:

1 ; if object 7 belongs to category k.
Gijk = 0 -

otherwise.
91j1 1jk 915K;
Gi=1] gin Gijk gijk; |, j=1,---,m.
gnj1 9njk InjK;

These matrices can be collected in an (n X K) partitioned
matrix G = [G1,Ga, - -, Gm], where K = Z;"zl K; is the
total number of categories.

The goal of the quantification of categorical data is to
represent these objects in a p dimensional space (p < m).
Homogeneity analysis [5], [6] is the basic technique of non-
linear multivariate analysis and aims at the representation
of the structure of non-numerical multivariate data by as-
signing scores to the objects and the categories of vari-
ables. Let W; denote the (K; x p) matrix containing the
multiple category quantification of variable j and Z be an
(n x p) matrix containing the resulting p object scores as
follows:
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221 222 22p
Z = . s (11)
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Homogeneity analysis is based on the principle that a
scale consisting of nominal variables is homogenizable if all
variables can be quantified in such a way that the resulting
scale is homogeneous, i.e., all the variables in the scale are
linearly related. The departures from perfect homogeneity
are measured by the Gifi loss function.

m
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In order to avoid the trivial solution, the loss function is
minimized under the conditions,

1/z = o7, (14)
z'z nl. (15)
Here, the Gifi loss function can be represented as
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S99 ) 1 (0 y o St
j=1i=1 =1

and is similar to the least squares criterion for PCA based
on the component-wise approximation. Then, in the next
subsection, we propose a new simultaneous approach to
fuzzy clustering and quantification of incomplete categor-
ical data in the same manner as the previous section.

B. Simultaneous Approach to Fuzzy Clustering and Ho-
mogeneity Analysis with Missing Values

In this subsection, we propose a new approach that per-
forms fuzzy clustering and homogeneity analysis simulta-
neously. The fuzzy partitioning of n objects is performed
by introducing memberships uc;,c=1,---,C,i=1,---,n
and u,; denotes the membership degree of the i-th object
to the c-th cluster. The objective function with regular-
ization by entropy is defined as follows:

ot = —ZZu{(z GWe;) UcM;
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where M; is the (n x n) diagonal matrix,

K; K;
M; = diag(Zgljk, e ,Zgnjk)7
k=1 k=1

(18)

If the i-th object answered to the j-th question, Zf:;l Gijk
is 1. Otherwise, 0. Then the i-th diagonal element of M; is
the binary variable that indicates whether the i-th object
(individual) answered to the j-th question. Therefore, the
minimization of Eq.(17) implies that local quantification
is performed by ignoring the missing values of indicator
matrix in the same way as linear fuzzy clustering with
missing values.

To derive unique solution, Eq.(17) is minimized under
the following conditions.

ul M. Z, o,
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where M, = 3770 M;.
The optimal solutlon is derived based on iterative least
squares technique. From the necessary condition for the
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optimality dc* /0W.; = O, the updating rule for W; is
derived as

We; = DG'GU.Z, (21)

where D = G;-'—UCGJ-. Consequently, from do*/0Z. = O
and 90* /du.; = 0, we have

m
= MY GW, (22)
j=1
and

e = exp(Bci—l)! (23)
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respectively. When we consider the “probabilistic con-

straint” [9] for memberships (E LUci = 1), the new
membership is calculated as
N exp(Bei
by = _c—p(_‘)”““ (25)
Ez:l exp(Bi;)

The proposed algorithm can be written as follows.

Stepl Initialize Z. and U, randomly and normal-
ize them so that the probabilistic constraint and
Eqgs.(19), (20) hold.

Step2 Calculate W;; using Eq.(21).

Step3 Calculate Z. using Eq.(22).

Step4 Normalize Z. so that Egs.(19), (20) hold.

Step5 Calculate u¢; using Eq.(25).

Step6 If

NEW OLD ‘< €,

max | g
then stop. Otherwise, return to Step 2.

IV. NUMERICAL EXPERIMENTS

In this section, we present the result of analysis for find-
ing the relationship between interests and tastes. Table I
shows a result of questionnaire about interests and tastes
of 7 youngsters. In the table, the answer of responder 6
for “interests” is missing and the corresponding elements
are all “0”. We applied the proposed algorithm to this
categorical data set to derive 2 dimensional plots ignor-
ing the missing value. Table II shows the membership of
responders to each cluster and Fig. 1 shows the 2 dimen-
sional plots derived in each cluster. In the plots, o and
e indicate the categories and the responders respectively.
The responders are partitioned by the tastes for pasta and
the responders who like spaghetti are included only in 2nd
cluster. Then Fig. 1-(b) emphasizes the features of per-
sons who like pasta while Fig. 1-(a) shows the general
features. In this way, the proposed method is useful for
finding local features of incomplete categorical data sets.



CROSS-CLASSIFICATION TABLE OF INTERESTS AND TASTES OF YOUNGSTERS

TABLE I

interests tastes for pasta liking for car
responder | appreciation | watching | spectator | Chinese | spaghetti | Japanese | recreation | sports
of music movies sports noodle noodle vehicle car
1 0 0 1 0 0 1 1 0
2 1 0 0 1 0 0 1 0
3 0 1 0 0 1 0 0 1
4 1 0 0 1 0 0 0 1
5 0 0 1 0 1 0 1 0
6 0 0 0 0 0 1 1 0
7 0 0 1 1 0 0 1 0
TABLE 1I —T T T ]
MEMBERSHIP VALUES OF RESPONDERS 6e
responder || c=1 [ c=2 iy fapaneseo
1 0.488 | 0.512
2 0.587 | 0.413 4 appreciation RV car 1
3 0.000 | 1.000 O Ofmusics o !
4 0.617 | 0.383 Ofsports ™ o2 ]
5 0.000 | 1.000 “ Chinese cpecior
6 0.464 | 0.536 [ noodle spors
7 0.462 | 0.538 .
-1 L IL ~ , 4
-1 1

V. CONCLUSION

(a) 1st cluster

T M T
Japanese noodle,~56 ]

In this paper, we proposed a new local quantification
method that can handle missing observations. The ob-
Jective function was defined by introducing memberships
1o the Gifi loss function of homogeneity analysis. Be-
cause the minimization of the loss function is based on the
component-wise approximation of matrix, missing values
cen be ignored by multiplying “0” weights to the corre-
sponding errors in the same way as linear fuzzy cluster-
ing with incomplete data. We have formulated the prob-
lem so as to classify individuals into several clusters but
vategories can be also classified. Tsuchiya [10] proposed
a method for the construction of multi uni-dimensional
scales by classifying a set of qualitative variables into
groups. The comparative study is left for future works.
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